matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertaufgabe Dreieck
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Extremwertprobleme" - Extremwertaufgabe Dreieck
Extremwertaufgabe Dreieck < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:37 Mo 29.03.2010
Autor: chaosboy91

Aufgabe
Ein Drachen, der für Werbezwecke verwendet wird, hat die Form zweier aneinanderliegender gleichschenkliger Dreiecke. Aus bautechnischen Gründen muß die Summe aus Basis und Höhe EINES gleichschenkligen Dreiecks 24m betragen. Wie groß sind Basis und Höhe zu wählen, damit eine möglichst große Drachenfläche als Werbefläche zur Verfügung steht?

Muss ich dort die Höhe zunächst errechnen?Wie muss ich weiter vorgehen?Hb und Nb wäre sehr hilfreich


Erstposter:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremwertaufgabe Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 Mo 29.03.2010
Autor: MaRaQ

Hallo Chaosboy,

willkommen im Matheraum! :-)

> Ein Drachen, der für Werbezwecke verwendet wird, hat die
> Form zweier aneinanderliegender gleichschenkliger Dreiecke.
> Aus bautechnischen Gründen muß die Summe aus Basis und
> Höhe EINES gleichschenkligen Dreiecks 24m betragen. Wie
> groß sind Basis und Höhe zu wählen, damit eine
> möglichst große Drachenfläche als Werbefläche zur
> Verfügung steht?
>  Muss ich dort die Höhe zunächst errechnen?Wie muss ich
> weiter vorgehen?Hb und Nb wäre sehr hilfreich


Nun, zunächst musst du die Höhe noch gar nicht errechnen. Fassen wir doch mal zusammen, was die Aufgabe verlangt:

- Maximale Drachenfläche
- Bedingung: Höhe + Basis eines (gleichschenkligen) Dreiecks = 24 Meter

Was kann man damit anfangen?

Wie lautet denn die Formel für die Fläche eines Gleichschenkligen Dreiecks? (Tipp: Diese hängt von der Basis und der Höhe des Dreiecks ab).

Wenn du die Formel herausgefunden hast, gilt es für diese Formel das Maximum zu bestimmen (Hauptbedingung) unter der Nebenbedingung Basis + Höhe = 24 Meter. ;-)

Bezug
                
Bezug
Extremwertaufgabe Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:27 Mi 31.03.2010
Autor: chaosboy91

Also:
Flächeninhalt = [mm] \bruch{Basis*Hoehe}{2} [/mm]

daraus folgt:
HB:
Flächeninhalt = [mm] \bruch{Basis*Hoehe}{2} [/mm]
NB:
g=24-h (bereits umgestellt)

ZF:
A(h)= [mm] -\bruch{1}{2}*h^2+12h [/mm]

==>

A'(h) = h+12 = 0
==>
h=-12

A''(h) = 1



Soweit richtig?!
weil A''(h) = 1 => Minimum sagen würde?!

bitte um denkanstoß> Hallo Chaosboy,

>
> willkommen im Matheraum! :-)
>  
> > Ein Drachen, der für Werbezwecke verwendet wird, hat die
> > Form zweier aneinanderliegender gleichschenkliger Dreiecke.
> > Aus bautechnischen Gründen muß die Summe aus Basis und
> > Höhe EINES gleichschenkligen Dreiecks 24m betragen. Wie
> > groß sind Basis und Höhe zu wählen, damit eine
> > möglichst große Drachenfläche als Werbefläche zur
> > Verfügung steht?
>  >  Muss ich dort die Höhe zunächst errechnen?Wie muss
> ich
> > weiter vorgehen?Hb und Nb wäre sehr hilfreich
>  
>
> Nun, zunächst musst du die Höhe noch gar nicht errechnen.
> Fassen wir doch mal zusammen, was die Aufgabe verlangt:
>
> - Maximale Drachenfläche
>  - Bedingung: Höhe + Basis eines (gleichschenkligen)
> Dreiecks = 24 Meter
>  
> Was kann man damit anfangen?
>
> Wie lautet denn die Formel für die Fläche eines
> Gleichschenkligen Dreiecks? (Tipp: Diese hängt von der
> Basis und der Höhe des Dreiecks ab).
>  
> Wenn du die Formel herausgefunden hast, gilt es für diese
> Formel das Maximum zu bestimmen (Hauptbedingung) unter der
> Nebenbedingung Basis + Höhe = 24 Meter. ;-)


Bezug
                        
Bezug
Extremwertaufgabe Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 09:41 Mi 31.03.2010
Autor: Steffi21

Hallo, du hast einen Vorzeichenfehler

A'(h)=(-h)+12

0=(-h)+12

h=12

somit ist dann A''(h)=(-1) es liegt also ein Maximum vor

Steffi


Bezug
                                
Bezug
Extremwertaufgabe Dreieck: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:09 Mi 31.03.2010
Autor: chaosboy91

danke ihr 2, habt mir sehr weitergeholfen!
basis und höhe müssen jetzt jeweils 12LE betragen.
(wenn nicht noch was schief gegangen ist)


vielen dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]