matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenExtremwertaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremwertaufgabe
Extremwertaufgabe < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:49 So 31.08.2008
Autor: mikemodanoxxx

Aufgabe
[Dateianhang nicht öffentlich]

Hi,

hier mal mein Rechenweg:
[mm] L(x,y,z,t,\lambda) [/mm] = xyzt + [mm] \lambda(x+y+z+t-4c) [/mm]

[mm] L_{x} [/mm] = yzt + [mm] \lambda [/mm] = 0
[mm] L_{y} [/mm] = xzt + [mm] \lambda [/mm] = 0
[mm] L_{z} [/mm] = xyt + [mm] \lambda [/mm] = 0
[mm] L_{t} [/mm] = xyz + [mm] \lambda [/mm] = 0
[mm] L_{\lambda} [/mm] = x + y + z + t -4c = 0

Aus den ersten 4 Gleichungen folgt x=y=z=t und aus der letzten damit:
4x = 4c => x=c=y=z=t

f(c,c,c,c) = [mm] c^{4} [/mm]

Richtig soweit? Wie mache ich mir jetzt klar, dass an dieser Stelle wirklich ein Maximum vorliegt?

ciao, Simon.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 So 31.08.2008
Autor: MathePower

Hallo mikemodanoxxx,

> [Dateianhang nicht öffentlich]
>  Hi,
>  
> hier mal mein Rechenweg:
>  [mm]L(x,y,z,t,\lambda)[/mm] = xyzt + [mm]\lambda(x+y+z+t-4c)[/mm]
>  
> [mm]L_{x}[/mm] = yzt + [mm]\lambda[/mm] = 0
>  [mm]L_{y}[/mm] = xzt + [mm]\lambda[/mm] = 0
>  [mm]L_{z}[/mm] = xyt + [mm]\lambda[/mm] = 0
>  [mm]L_{t}[/mm] = xyz + [mm]\lambda[/mm] = 0
>  [mm]L_{\lambda}[/mm] = x + y + z + t -4c = 0
>  
> Aus den ersten 4 Gleichungen folgt x=y=z=t und aus der
> letzten damit:
>  4x = 4c => x=c=y=z=t

>  
> f(c,c,c,c) = [mm]c^{4}[/mm]
>  
> Richtig soweit? Wie mache ich mir jetzt klar, dass an
> dieser Stelle wirklich ein Maximum vorliegt?


Na ja, es gibt noch mehr Lösungen. Die von Dir genannte Lösung ist eine davon.

Wenn Du alles Lösungen betrachtest, und dann jeweils das genannte Produkt bildest,
stellst Du fest, daß das das Maximum unter der angegebenen Nebenbedingung ist.


>  
> ciao, Simon.


Gruß
MathePower

Bezug
                
Bezug
Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:47 So 31.08.2008
Autor: mikemodanoxxx

Hm und wie mache ich das? Ich meine ich habe ja jetzt ein Extremum gefunden und müsste noch irgendwie zeigen ob es Maximum oder Minimum ist.

Und zu der b) habe ich auch eine Frage. Man findet ja kein Minimum über die Aufgabe vorher. Aber ist nicht zb x=2c, y=c, z=c, t=0 ein Minimum? Es erfüllt die Bedingungen und das Produkt wäre 0.

Bezug
                        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:09 Mo 01.09.2008
Autor: angela.h.b.


> Hm und wie mache ich das? Ich meine ich habe ja jetzt ein
> Extremum gefunden und müsste noch irgendwie zeigen ob es
> Maximum oder Minimum ist.

Hallo,

MahePower hatte Dir ja schon gesagt, daß Du nicht alle Lösungen des Gleichungssystems gefunden hast.
Es gibt da noch allerlei  Punkte, für die das System =0 wird.

Ich weiß ja nicht, wie Du das Gleichungssystem gelöst hast, ich hatte z.B. so etwas dastehen:

0=zt(x-y).

Daraus folgt x=y oder t=0 oder z=0,

und alle drei Fälle wären zu untersuchen im weiteren Verlauf der Rechnung.

Damit bekommst Du dann die Fälle, für die der Funktionswert =0 ist.

Die Menge, auf der Du die Funktion untersuchen sollst, ist eine abgeschlossene und bschränkte Teilmenge des [mm] \IR^4, [/mm] nämlich der Schnitt des von [mm] \vektor{4c\\0\\0\\0}, \vektor{0\\4c\\\\0},\vektor{0\\0\\4c\\0}, \vektor{0\\0\\0\\4c} [/mm] aufgespannten "Würfels" (falls es für dieses Ding ein Wort gibt, fällt es mir gerade nicht ein) mit der 3-dimensionalen zu [mm] \vektor{1\\1\\1\\1} [/mm] senkrechten Hyperebene, also der Hyperebene durch  die [mm] \vektor{4c\\0\\0\\0}, \vektor{0\\4c\\\\0},\vektor{0\\0\\4c\\0}, \vektor{0\\0\\0\\4c}. [/mm]

Langer Rede kurzer Sinn: die zu betrachtende Menge ist kompakt.

Auf kompakten Mengen nehmen stetige Funktionen ihr Minimum und Maximum an.

Mathepower hat ja schon gesagt, daß Du nun die Funktionswert zu den kritischen Punkten ausrechnen und vergleichen sollst.

[mm] f(c,c,c,c)=c^4, [/mm] und die Funktionswerte an den anderen kritischen Punkten sind =0.

Also muß (c,c,c,c) die Stelle des Maximums sein.


> Und zu der b) habe ich auch eine Frage. Man findet ja kein
> Minimum über die Aufgabe vorher.

Doch.

Aber ist nicht zb x=2c,

> y=c, z=c, t=0 ein Minimum? Es erfüllt die Bedingungen und
> das Produkt wäre 0.

Ja.


Man kann sich das im Vierdimensionalen ja furchtbar schlecht vorstellen.

Ich habe die Aufgabe mal um eine Dimension abgespeckt und f(x,y,z)=xyz mit x+y+z=3c mit [mm] x,y,z\ge [/mm] 0 betrachtet.

Die Fläche ist das Dreiecks mit  den Eckpunkten (3c / 0 / 0), (0 / 3c / 0), (0 / 0 / 3c)  mit der Ebene durch diese Punkte.

Entlang der Ränder nimmt die Funktion den Wert 0 an, und [mm] f(c,c,c)=c^3. [/mm]


Gruß v. Angela


Bezug
                                
Bezug
Extremwertaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:06 Mo 01.09.2008
Autor: mikemodanoxxx

ok danke.

Ich hatte halt immer die Gleichungen nach Variablen aufgelöst und dann ineinander eingesetzt. Dann gekürzt und hatte sowas da stehen wie x=y. Habe halt hier nicht bedacht, dass ja ne Variable 0 sein könnte und man dann nicht durch sie teilen darf..

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]