matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:56 Do 03.11.2005
Autor: Mari

Ich kann folgende Aufgabe nicht vollständig lösen und hoffe, dass mir jemand helfen kann:
Die Kurve der Funktion f(x)=(x²-4) / (x+3) und die x-Achse umschließen unterhalb der x-Achse eine Fläche, in die ein Rechteck größten Inhalts einbeschrieben werden soll, dessen eine Seite auf der x-Achse liegt. Gesucht sind die Koordinaten der Ecken.

Mein Ansatz:
Die beiden Ecken auf der x-Achse sind u und v, wobei u > w. Die Höhe meines Rechtecks ist h. Und h = f(u).
Also ist mein Flächeninhalt A= f(u)  * (u - w) , dies ist meine Nebenbedingung.
Ich habe aber zu viele Unbekannte und kann damit nicht weiter rechnen.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich danke euch schonmal

        
Bezug
Extremwertaufgabe: Antwort (nicht fertig)
Status: (Antwort) noch nicht fertig Status 
Datum: 15:30 Do 03.11.2005
Autor: Mathe0

Hallo,

also ich würde bei dieser Aufgabe erstmal hingehen und die Funktion in X-Richtunh verschieben, um es einfacher zu machen. Die Nullstellen sind ja bei -2 und 2. D.h. dann verschieben um 2 nach rechts damit die Nullstelle bei -2 dann genau im Ursprung liegt.

[mm] \Rightarrow [/mm] f_(x-2)

dann bekomme ich die Funktion  [mm] \bruch{x*(x-4)}{x+1} [/mm] raus.

Nun sollte die Lösung der Aufgabe leichter fallen. Bei der Bestimmung der gesuchten Koordinaten darfst du allerdings nicht vergessen die Verschiebung zu berücksichtigen.

Mfg
Mathe0

Bezug
                
Bezug
Extremwertaufgabe: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:25 Do 03.11.2005
Autor: Mari

Danke. Gute Idee, aber damit ist mein Problem noch nicht gelöst, weil ich immer noch genauso viele Unbekannte hab. Ich kann so auch nicht weiterrechnen, oder?!


Bezug
                        
Bezug
Extremwertaufgabe: Antwort (nicht fertig)
Status: (Antwort) noch nicht fertig Status 
Datum: 17:50 Do 03.11.2005
Autor: Mathe0

Hallo,

hab das leider vorher nicht ganz gepeilt. Dein Problem ist  also etwas für a zu finden (Flächeninhalt = a*b). Für b ist ja klar f_(u). Für a müsste man jetzt u-w einsetzen wobei w der X-Wert der beiden linken Eckpunkte sein sollte. Wie man das jetzt aber ausdrückt bin ich mir auch noch nicht im klaren, sorry

Mfg
Mathe0

Bezug
                                
Bezug
Extremwertaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:21 Do 03.11.2005
Autor: Mari

Die Lösung stimmt meiner Ansicht nach nicht. Anfangs hab ich auch so gerechnet. Aber die Grundseite des Rechtecks ist nicht einfach u, da u nur die x-koordinate ist. Man benötigt eine zweite Stelle w und die Grundseite ist dann u-w, wenn u>w ist. Der Flächeninhalt ist dann f(u) * (u-w). f(u) ist die eine Seite, nämlich die Höhe und u-w die andere Seite.
Somit ist es meiner Meinung nach auch irrelevant, ob die Funktion verschoben wird oder nicht.
Ich hoffe du kannst nachvollziehen, was ich meine. Vielen Dank für die Hilfe. Lg


Bezug
                                        
Bezug
Extremwertaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:26 Do 03.11.2005
Autor: Mathe0

Hallo,

habe meine obwige Antwort editiert, sorry.

Mfg

Bezug
        
Bezug
Extremwertaufgabe: Anderer Ansatz!
Status: (Antwort) fertig Status 
Datum: 12:27 Fr 04.11.2005
Autor: Zwerglein

Hi, Mari,

also meiner Meinung nach solltest Du genau umgekehrt vorgehen, d.h. erst die Ecken des Rechtecks bestimmen, die auf dem Funktionsgraphen liegen! (Ach ja: Hast Du die Koordinaten des Tiefpunkts eigentlich schon?)

Also: Du schneidest den Funktionsgraphen mit der waagrechten Geraden
y = -k    (k [mm] \ge [/mm] 0; dieses k ist gleichzeitig die "Höhe" des Rechtecks!).
(Die Schnittpunkte sind die gesuchten Ecken; die anderen Ecken liegen senkrecht "drüber" auf der x-Achse)

Dabei erhalte ich folgende Lösungen:

[mm] x_{1/2} [/mm] = [mm] \bruch{-k \pm \wurzel{k^{2}-12k+16}}{2} [/mm]
(Diskriminante positiv; k [mm] \ge [/mm] 0 ergibt: 0 [mm] \le [/mm] k [mm] \le [/mm] 1,523)

Die Breite des Rechtecks ist dann: b = [mm] |x_{2} [/mm] - [mm] x_{1}| [/mm]
(Keine Angst: Den Betrag kriegen wir schon wieder los!

Ich krieg' dafür: [mm] \wurzel{k^{2}-12k+16} [/mm]

Fläche des Rechtecks daher:

A(k) = [mm] k*\wurzel{k^{2}-12k+16} [/mm]
bzw.
A(k) = [mm] \wurzel{k^{4}-12k^{3}+16k^{2}} [/mm]

Das könntest Du nun theoretisch so wie es ist ableiten und =0 setzen;
musst Du aber nicht, denn:
Wenn A(k) ein Maximum aufweist, dann hat die Funktion
g(k) = [mm] A^{2}(k) [/mm] = [mm] k^{4}-12k^{3}+16k^{2} [/mm]
an derselben Stelle eines!

Daher reicht's, wenn Du g'(k) = 0 setzt und den Randvergleich machst.
Dass aber an den Rändern =0 rauskommt (A(0) =0 und A(1,523) =0),
ist klar, da dort ja die Rechtecke zu Strecken werden, daher Inhalt =0.
Demnach muss der oben erhaltene Wert eine Maximalstelle sein.
(Zum Vergleich: Ich krieg' [mm] k_{1}=1; k_{2}=8. [/mm] Der zweite Wert aber ist wegen des Definitionsbereichs für k unbrauchbar. Daher einzige Lösung: k=1)

Aus dem k-Wert kannst Du nun die Koordinaten der Punkte ermitteln.

mfG!
Zwerglein


Bezug
                
Bezug
Extremwertaufgabe: klasse!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Sa 05.11.2005
Autor: informix

Hallo Zwerglein,

klasse dieser Ansatz! Ich habe mal gleich einen Verweis aus den Materialien zu diesem Forum auf diese Aufgabe gesetzt, damit ich sie später mal wiederfinde!

Das zeigt einmal mehr, dass häufig ein Blickwechsel zu viel schöneren Lösungen führt als der erstbeste Weg.

Hoffenlich hat Mari das auch schon entdeckt.

Gruß informix


Bezug
                        
Bezug
Extremwertaufgabe: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:29 Sa 05.11.2005
Autor: Zwerglein

Hi, informix,

> klasse dieser Ansatz! Ich habe mal gleich einen Verweis aus
> den
> Materialien zu diesem Forum
> auf diese Aufgabe gesetzt, damit ich sie später mal
> wiederfinde!
>  
> Das zeigt einmal mehr, dass häufig ein Blickwechsel zu viel
> schöneren Lösungen führt als der erstbeste Weg.

[verlegen] Danke für die Blumen! [verlegen]

mfG!
Zwerglein

Bezug
                
Bezug
Extremwertaufgabe: Vielen Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:44 So 06.11.2005
Autor: Mari

Vielen, vielen Dank für deine Hilfe, ohne dich hätte ich die Aufgabe wahrscheinlich nie lösen könen.
Lieben Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]