matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrieren und DifferenzierenExtremwert nach Steiner-Weber
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrieren und Differenzieren" - Extremwert nach Steiner-Weber
Extremwert nach Steiner-Weber < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert nach Steiner-Weber: Ansatz
Status: (Frage) beantwortet Status 
Datum: 14:39 So 11.11.2012
Autor: ObiKenobi

Aufgabe
Die Quadratsumme der Entfernungen zu den Angegebenen Punkten soll entlang der vorgeschriebene Linie möglichst klein werden. (Extremwertaufgaben deises Typs werden nach Steiner-Weber benannt.)

(a) A(0,-1), B(0,0), C(0,1) x+1=0
(b) R(0,0, S(2,0), T(0,2) x²+y²=1

Mein Ansatz für (a):
[mm] =\summe_{i=1}^{3}(\wurzel{(x-x_i)^{2}+(y-y_i)^{2}})^{2} [/mm]
[mm] =\summe_{i=1}^{3}(x-x_i)^{2}+(y-y_i)^{2} [/mm]
(wobei [mm] x_i [/mm] und [mm] y_i [/mm] jeweils für A, B und C stehen) Ich habe die Wurzel quadriert da nach der Quadratsummer gefragt wird.


Zur Aufgabe Oben, ich denke mal das x+1=0 wohl für die Nebenbedingung steht. Muss ich die Aufgabe dann einfach nach x, y und [mm] \lambda [/mm] auflösen?

Und kann ich wenn x+1=0 die Nebenbedingung ist einfach auflösen nach

[mm] H(x,y,\lambda)=\summe_{i=1}^{3}(x-x_i)^{2}+(y-y_i)^{2}+\lambda(x+1) [/mm]

Und dann ableiten oder funktioniert das in dem fall anders?

        
Bezug
Extremwert nach Steiner-Weber: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 So 11.11.2012
Autor: MathePower

Hallo ObiKenobi,

> Die Quadratsumme der Entfernungen zu den Angegebenen
> Punkten soll entlang der vorgeschriebene Linie möglichst
> klein werden. (Extremwertaufgaben deises Typs werden nach
> Steiner-Weber benannt.)
>  
> (a) A(0,-1), B(0,0), C(0,1) x+1=0
>  (b) R(0,0, S(2,0), T(0,2) x²+y²=1
>  
> Mein Ansatz für (a):
> [mm]=\summe_{i=1}^{3}(\wurzel{(x-x_i)^{2}+(y-y_i)^{2}})^{2}[/mm]
>  [mm]=\summe_{i=1}^{3}(x-x_i)^{2}+(y-y_i)^{2}[/mm]
>  (wobei [mm]x_i[/mm] und [mm]y_i[/mm] jeweils für A, B und C stehen) Ich
> habe die Wurzel quadriert da nach der Quadratsummer gefragt
> wird.
>  Zur Aufgabe Oben, ich denke mal das x+1=0 wohl für die
> Nebenbedingung steht. Muss ich die Aufgabe dann einfach
> nach x, y und [mm]\lambda[/mm] auflösen?
>  
> Und kann ich wenn x+1=0 die Nebenbedingung ist einfach
> auflösen nach

>


Die Nebenbedingung x+1=0 kannst Du nach x auflösen
und in die Quadratsumme einsetzen.
Dann hast Du eine Funktion, die nur noch von einer Variablen abhängt.

  

> [mm]H(x,y,\lambda)=\summe_{i=1}^{3}(x-x_i)^{2}+(y-y_i)^{2}+\lambda(x+1)[/mm]
>  
> Und dann ableiten oder funktioniert das in dem fall anders?


Das funktioniert genauso.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]