matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremalrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Extremwertprobleme" - Extremalrechnung
Extremalrechnung < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremalrechnung: Volumen + Flächen Optimierung
Status: (Frage) beantwortet Status 
Datum: 21:56 So 08.02.2009
Autor: carnetti

Aufgabe
Ein Rechteck soll einen Umfang (U) haben und sich um eine seiner eigene Mittelachsen rotieren, so daß  ein Zylinder ensteht.  Es sollen nun die Maße für das Rechteck gefunden werden, die das Volumen des Zylinders maximal werden lassen. Die zu Optimierende Größe ist also das Volumen des Zylinders. Einen Ansatz habe ich schon :V(r,h)= Pie [mm] *r^2 [/mm] *h   Wie könnte man diese Aufgabe lösen ??

Ich habe die Aufgabe noch einmal überarbeitet, da ich die aufgabe falsch abgeschrieben habe. Das Volumen ist natürlich Pie * [mm] r^2 [/mm] *h


Die nächste Aufgabe lautet:
Ich brache für die Optimierung des Volumens eines Quaders eine gesuchte
länge (X).  Die Zielfunktion habe ich schon und ist
V(x) = [mm] 4x^3 -144x^2+1260x [/mm] ,die Ableitung davon ist [mm] 12x^2- [/mm] 288x +1260=0
Die Auflösung nach x ist mir noch nicht bekannt.
Wie könnte ich diese Gleichung lösen ?

Auch hier habe ich versucht die Quadratische Ergänzung zu benutzten sowie die P-Q -Formel, doch die Diskriminate ist negativ also ein negative Zahl unter einer Wurzel. Leider ohne erfolg.



Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de/forum/Extremalrechnung

        
Bezug
Extremalrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:04 So 08.02.2009
Autor: leduart

Hallo
1. Deine Volumenformel fuer den Zylinder ist falsch. Wo kommt denn das [mm] 1/3*r^2 [/mm] her? stell dir die laengen in cm vor, dann addierst du cm3 und [mm] cm^2! [/mm] Der erste Teil ist das Volumen.
Der Umfang des Rechtecks mit den Seiten a und b ist?
was davon wird r, was hin deinem Zylinder. Schreib das als hauptbed. auf und schmeiss dann a oder b durch den bekannten umfang U raus.
2. Du kannst doch sicher eine quadratische Gleichung loesen: quadratische ergaenzung, abc Formel oder pq Formel?
erstmal wuerd ich noch die Gl durch 12 teilen.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]