matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesExtrema & Wendepunkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis-Sonstiges" - Extrema & Wendepunkt
Extrema & Wendepunkt < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema & Wendepunkt: Aufgabe/Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:29 Mo 01.02.2010
Autor: manolya

Aufgabe
Gauß'sche Glockenkurve [mm] phi(t)=\bruch{1}{2\pi}*et^{0,5*t^{2}} [/mm]
-Bestimmen Sie die Lage des Hochpunktes und der Wendepunkte von phi.

Abend,

stimmt die Ableitung?
[mm] phi'(t)=-\bruch{1}{2\pi}*t*et^{0,5*t^{2}} [/mm]
[mm] phi''(t)=-\bruch{1}{2\pi}*et^{0,5*t^{2}}+\bruch{1}{2\pi}*t^{2}*et^{0,5*t^{2}} [/mm]

Danke im Voraus.

Gruß

        
Bezug
Extrema & Wendepunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Mo 01.02.2010
Autor: steppenhahn

Hallo,

> Gauß'sche Glockenkurve
> [mm]phi(t)=\bruch{1}{2\pi}*et^{0,5*t^{2}}[/mm]
>  -Bestimmen Sie die Lage des Hochpunktes und der
> Wendepunkte von phi

Du  hast das etwas seltsam aufgeschrieben - was ist "et"? Ich vermute mal, da sollte nur e stehen.
Die Gaußsche Glockenkurve hat eigentlich als Vorfaktor [mm] \frac{1}{\sqrt{2*\pi}}... [/mm] Aber gut.

>  Abend,
>  
> stimmt die Ableitung?
>  [mm]phi'(t)=-\bruch{1}{2\pi}*t*et^{0,5*t^{2}}[/mm]

Da ich nicht weiß, wo du dein Minus herholst, wird es wahrscheinlich doch

[mm] $\phi(t) [/mm] = [mm] \frac{1}{2*\pi}*e^{\red{-}0.5*t^{2}}$ [/mm]

gewesen sein, was du ableiten wolltest?

> [mm]phi''(t)=-\bruch{1}{2\pi}*et^{0,5*t^{2}}+\bruch{1}{2\pi}*t^{2}*et^{0,5*t^{2}}[/mm]

... Dann stimmt auch diese Ableiten :-) [ok]

Grüße,
Stefan

Bezug
        
Bezug
Extrema & Wendepunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 Mo 01.02.2010
Autor: manolya

g(x)= [mm] 5,4*(1/X)+10,8*(1/X^2) [/mm]

Ist die Aufleitung G(x)=(-10,8*(1/x))+C  ?  

Danke im Voraus.

Bezug
                
Bezug
Extrema & Wendepunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 20:21 Mo 01.02.2010
Autor: XPatrickX

Hallo!

> g(x)= [mm]5,4*(1/X)+10,8*(1/X^2)[/mm]
>  
> Ist die AufleitungG(x)=(-10,8*(1/x))+C  ?  

Du suchst also eine Stammfunktion.

[notok]

Du musst auch den ersten Summanden integrieren. Hier kommst du mit dem üblichen Verfahren für Potenzen allerdings nicht weiter. Denke mal an den Logarithmus ;-)



>
> Danke im Voraus.


Gruß Patrick

Bezug
                        
Bezug
Extrema & Wendepunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:26 Mo 01.02.2010
Autor: manolya

[mm] G(x)=5,4*ln(x)+\bruch{10,8}{x} [/mm] ..??

Bezug
                                
Bezug
Extrema & Wendepunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Mo 01.02.2010
Autor: XPatrickX


> [mm]G(x)=5,4*ln(x)\red{-}\bruch{10,8}{x}\red{(+c)}[/mm]  ..??

Jetzt hast du das Minus vergessen.
So wie es jetzt oben steht ist es richtig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]