matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikExponentialverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "mathematische Statistik" - Exponentialverteilung
Exponentialverteilung < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:32 Fr 22.05.2009
Autor: bezauberndejeany

Hallo!
Habe eine (für Leute, die das verstehen) bestimmt total einfache Frage.
Ich habe eine Zufallsvariable X, sie ist exponentialverteilt. Wie ist dann [mm] \overline{X} [/mm] verteilt? Bzw. wie kann ich sowas ausrechnen. Auch für andere Verteilungen?

DANKE schonmal!!!

        
Bezug
Exponentialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:54 Fr 22.05.2009
Autor: Fulla

Hallo bezauberndejeany,

was meinst du denn mit [mm] $\overline [/mm] X$? Ist das der Mittelwert? Oder der Erwartungswert?
Falls ja, hat der keine Verteilung, sondern ist eine Zahl.

Die []Exponentialverteilung hat die W.dichte [mm] $f(x)=\lambda e^{-\lambda x}$ ($x\ge [/mm] 0$).
Der Erwartungswert ist [mm] $E(X)=\int_0^\infty x*f(x)dx=\int_0^\infty x\lambda e^{-\lambda x}dx=\frac{1}{\lambda}$ [/mm]

Im Allgemeinen musst du von [mm] $-\infty$ [/mm] bis [mm] $\infty$ [/mm] integrieren. Die Exponentialverteilung ist aber 0 für $x<0$, darum wird hier nur von 0 bis [mm] $\infty$ [/mm] integriert.


Lieben Gruß,
Fulla

Bezug
                
Bezug
Exponentialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:57 Fr 22.05.2009
Autor: vivo

Hallo,

oder meinst du das Komplement, dass würde aber nur für Ereignisse Sinn machen und nicht für ZV's:

A:= X [mm] \in [/mm] [t, [mm] \infty[ [/mm]

und willst

P( [mm] \overline{A} [/mm] )

bei reellen ZV's ist dass halt dann einfach die Wkeit dass die ZV einen Wert im Intervall [0,t] hat.


Bezug
                        
Bezug
Exponentialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 Fr 22.05.2009
Autor: bezauberndejeany

Sorry, ich meine den Mittelwert.
Beispielsweise ist bei der Normalverteilung
[mm] X~N(\mu,\delta^{2}) [/mm]
[mm] \overline{X}~N(\mu,\delta^{2}/n) [/mm]
Also mit Delta meine ich Sigma, aber das Zeichen gibt es hier irgendwie nicht.
Und genauso möchte ich gerne wissen, wie [mm] \overline{X} [/mm] für ein exponentialverteiltes X verteilt ist.
Danke!!!

Bezug
                                
Bezug
Exponentialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:57 Fr 22.05.2009
Autor: vivo

Hallo,

wie meinst du dass?

meinst du dass du unabhängige ZV's [mm] X_1 [/mm] , ... , [mm] X_n [/mm] hast die alle [mm] N(\mu, \sigma^2) [/mm] verteilt sind und du willst wissen wie dann

[mm] \overline{X} [/mm] = [mm] \frac{X_1 + ... + X_n}{n} [/mm]

verteilt ist ???????

gruß

Bezug
                                        
Bezug
Exponentialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:03 Fr 22.05.2009
Autor: bezauberndejeany

Ja, genau. Nur, dass ich das bei der Normalverteilung schon weiß.
Ich möchte wissen, wie [mm] \overline{X}=\bruch{X_{1}+...+X_{n}}{n} [/mm] verteilt ist, wenn [mm] \overline{X}_{i} [/mm] jeweils unabhängig exponentialverteilt sind.

Bezug
                                
Bezug
Exponentialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:01 Fr 22.05.2009
Autor: vivo

Hallo,

wenn alle [mm] X_i [/mm] unabhängig sind, dann musst du eben die verteilung von [mm] \underline{X} [/mm] = [mm] X_1 [/mm] + ... + [mm] X_n [/mm]    durch Faltung berechnen und dann die von [mm] \overline{X}= \frac{\underline{X}}{n} [/mm]

nochmal zur Normalverteilung:

sind alle [mm] X_i \quad N(\mu [/mm] , [mm] \sigma^2 [/mm] ) verteilt so ist

[mm] \underline{X} \quad [/mm] N(n [mm] \mu [/mm] , n [mm] \sigma^2) [/mm] verteilt

und [mm] \overline{X} \quad N(\mu, \sigma^2 [/mm] / n)

die Faltung von exponentialverteilten Zufallsvariablen ergibt eine Gamma-Verteilung mit folgender Dichte:

[mm]f(n)=\begin{cases} \frac{b^p}{\Gamma{p}}x^{p-1}e^{-bx}, & \mbox{für } x \ge \mbox{ 0} \\ 0, & \mbox{für } x < \mbox{ 0} \end{cases}[/mm]

jetzt musst halt noch schauen wie die Verteilung dann ist wenn die Summe noch durch n geteilt wird.

gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]