matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungExponentialverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitsrechnung" - Exponentialverteilung
Exponentialverteilung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:28 Do 14.01.2016
Autor: Laura87

Aufgabe
Die zufällige Lebensdauer einer Batterie sei exponentialverteilt. D.h. dasnzugehörige W-Maß ist bestimmt durch die Dichte f (x)= [mm] \lambda e^{-\lambda * x} [/mm] für x [mm] \ge [/mm] 0

Wie groß ist die Wahrscheinlichkeit, dass die Lebensdauer der Batterie
a) mehr als vier Jahre beträgt
b) weniger als ein Jahr beträgt

Hallo,

ich ging in der Übung davon aus, dass ich es schnell lösen knn, jedoch bin ich jetzt verwirrt.

Für a hatte ich mir folgendes überlegt

P(A)= lebt mehr als vier Jahre

[mm] P(A)=\integral_{0}^{4}{f (x)dx} [/mm]

Mein übungsleiter meinte jedoch, dass das nicht richtig ist und ich die gegenwahrscheinlichkeit betrachten muss.

[mm] P(A^C)=1-\integral_{0}^{4}{f (x)dx}=1/e \approx [/mm] 0,37

Dh die Wahrscheinlichkeit, dass die Lebensdauer der Batterie mehr als 4 Jahre beträgt liegt bei 37%

Das verstehe ich jetzt aber nicht. Das, was ich mit [mm] P(A^C) [/mm] berechnet habe ist doch die Wahrscheinlichkeit  dafür, dass die Batterie weniger als vier Jahre lebt oder wo liegt mein Denkfehler?

Würde mich über eine Antwort sehr freuen
Gruß Laura

        
Bezug
Exponentialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Do 14.01.2016
Autor: Gonozal_IX

Hiho,

dazu stelle ich dir die Gegenfrage: Warum berechnest du denn [mm] $\int_0^4 [/mm] f(x) dx$

Was ist das denn in deinen Augen?

Gruß,
Gono

Bezug
                
Bezug
Exponentialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:05 Do 14.01.2016
Autor: Laura87

Hallo,

danke zunächst für die Antwort.

Damit möchte ich P(A) berechnen. Also die Wahrscheinlichkeit, dass die Batterie mehr als vier Jahre lebt.

Bezug
                        
Bezug
Exponentialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:11 Do 14.01.2016
Autor: Thomas_Aut

Hallo,

das ist aber falsch!
denn:

für a<b gilt

[mm] $\mathbb{P}[a \le [/mm] X [mm] \le [/mm] b] = [mm] \int_{a}^{b}f(x)dx$ [/mm]



Lg

Bezug
                        
Bezug
Exponentialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:26 Do 14.01.2016
Autor: Gonozal_IX

Hiho,

> Damit möchte ich P(A) berechnen. Also die
> Wahrscheinlichkeit, dass die Batterie mehr als vier Jahre
> lebt.

Das sehe ich,  allerdings begründest du das nicht.
Und genau darauf zielte meine Frage ab.
Warum sollte diese Gleichheit gelten, das behauptest du einfach.

Was ist denn $ [mm] \int_0^x [/mm] f (x) dx $??

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]