matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenExponentialgleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - Exponentialgleichungen
Exponentialgleichungen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialgleichungen: Widerspruch
Status: (Frage) beantwortet Status 
Datum: 08:56 Do 12.04.2018
Autor: wolfgangmax

Aufgabe
<br>
5*3^(2x-1)=4^(x-3)
 


<br>Zu dieser Exponentialgleichung habe ich zwar eine Lösung, aber für mich liegt trotzdem ein Widerspruch vor:
- meine Lösung: x= -5,76, x eingesetzt in die Gleichung ergibt eine wahre Aussage
- die Gleichung forme ich um in eine Funktion, die dann den Funktionswert Null ergibt. 
- Und jetzt der Widerspruch: Eine Exponentialfunktion hat keine Nullstelle, lt Rechnung aber doch.
Wo liegt mein Denk- bzw. Rechenfehler?

Hier meine Lösungsweg:
         5*3^(2x-1)=4^(x-3)
    [mm] 5*3^{2x}*3^{-1}=4^x*4^{-3} [/mm]
        [mm]  3^{2x}*5/3=4^x*1/64 [/mm]
            [mm] 9^x*5/3=1/64  [/mm]  (dividiert durch [mm] 4^x) [/mm]
        [mm] (9/4)^x*5/3=1/64  [/mm]   (dividiert durch 5/3)
            [mm] (9/4)^x=0,009375 [/mm]
   log zur Basis (9/4) 0,009375=x
                  x= -5,76

MfG
wolfgangmax

 

        
Bezug
Exponentialgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:28 Do 12.04.2018
Autor: Diophant

Hallo,

> 5*3^(2x-1)=4^(x-3)
>  

>

> Zu dieser Exponentialgleichung habe ich zwar eine
> Lösung, aber für mich liegt trotzdem ein Widerspruch
> vor:
> - meine Lösung: x= -5,76, x eingesetzt in die Gleichung
> ergibt eine wahre Aussage
> - die Gleichung forme ich um in eine Funktion, die dann
> den Funktionswert Null ergibt.

Man kann nicht eine Gleichung in eine Funktion umformen. Was du vermutlich meinst, ist die Gleichung auf die Nullform zu bringen und den (auf der anderen Seite der Gleichung) entstandenen Term als Funktionsterm aufzufassen, also bspw. so:

[mm]5*3^{2x-1}-4^{x-3}=0[/mm]

> - Und jetzt der Widerspruch: Eine Exponentialfunktion hat
> keine Nullstelle, lt Rechnung aber doch.
> Wo liegt mein Denk- bzw. Rechenfehler?

Wenn ich mit meiner Vermutung richtig liege, dann ist das ja keine Exponentialfunktion mehr, sondern eine Summe bzw. Differenz zweier Exponentialfunktionen. So eine Differenz kann selsbtverständlich Nullstellen besitzen (sonst hätte die Grundgleichung ja keine Lösung!).

> Hier meine Lösungsweg:
>          5*3^(2x-1)=4^(x-3)
>     [mm]5*3^{2x}*3^{-1}=4^x*4^{-3}[/mm]
>         [mm] 3^{2x}*5/3=4^x*1/64[/mm]
>             [mm]9^x*5/3=1/64 [/mm]  (dividiert durch [mm]4^x)[/mm]
>         [mm](9/4)^x*5/3=1/64 [/mm]   (dividiert durch 5/3)
>             [mm](9/4)^x=0,009375[/mm]
>    log zur Basis (9/4) 0,009375=x
>                   x= -5,76

Die Lösung stimmt, ich habe es nochmal nachgerechnet.


Gruß, Diophant
 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]