matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenExponentialansatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Partielle Differentialgleichungen" - Exponentialansatz
Exponentialansatz < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialansatz: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:00 So 25.11.2012
Autor: guitarhero

Aufgabe
Bestimmen Sie drei Lösungen der hyperbolischen Differentialgleichung
[mm] u_{xx} [/mm] - [mm] u_{yy} [/mm] = - u - 2 [mm] u_{x} [/mm]

über den Exponentialansatz
u(x,y) = [mm] e^{\alpha x + \beta y} [/mm] , [mm] \alpha, \beta \in [/mm] R

Bemerkung: Der Exponentialansatz ist ein spezieller Produktansatz wegen [mm] e^{\alpha x + \beta y} [/mm] = [mm] e^{\alpha x} [/mm] * [mm] e^{\beta y} [/mm]

Hallo matheraum,

bei mir hängts bei dieser Aufgabe. Alles, was ich über google zu Exponentialansatz gefunden habe, war die Methode mit dem [mm] e^{\lambda x}, [/mm] aber das ist hier ja anders. Habe es dann so probiert, wie es in einer anderen Aufgabe vorher war mit dem Produktansatz

[mm] u(x,y)=e^{\alpha x + \beta y} [/mm]
[mm] u_{x}=\alpha e^{\alpha x + \beta y} [/mm]
[mm] u_{xx}=(\alpha)^{2} e^{\alpha x + \beta y} [/mm]
[mm] u_{y}=\beta e^{\alpha x + \beta y} [/mm]
[mm] u_{yy}=(\beta)^{2} e^{\alpha x + \beta y} [/mm]

Einsetzen in Dgl:
[mm] u_{xx}=(\alpha)^{2} e^{\alpha x + \beta y} [/mm] - [mm] (\beta)^{2} e^{\alpha x + \beta y} [/mm] = - [mm] e^{\alpha x + \beta y} [/mm] - 2 [mm] \alpha e^{\alpha x + \beta y} [/mm]


Wenn ich da nun die Exponentialfunktion rauskürze, komme ich auf
[mm] (\alpha)^{2} [/mm] - [mm] (\beta)^2 [/mm] = -1 [mm] -2\alpha [/mm]
Was fange ich damit aber nun an?
Muss ich das nun wie beim Produktansatz nach [mm] \alpha [/mm] und [mm] \beta [/mm] ordnen und dann gleich einer Konstanten setzen? Da [mm] \alpha [/mm] und [mm] \beta [/mm] ja aber selbst nur Konstanten sind, macht das nicht so viel Sinn, oder?

Ich hoffe, ich finde hier Hilfe :-)

Gruß,
guitarhero

        
Bezug
Exponentialansatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:28 Fr 30.11.2012
Autor: guitarhero

Frage hat sich geklärt, bin noch auf das Ergebnis gekommen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]