matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisExplizite Parametrisierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Explizite Parametrisierung
Explizite Parametrisierung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Explizite Parametrisierung: Frage
Status: (Frage) beantwortet Status 
Datum: 23:07 Fr 27.05.2005
Autor: mathmetzsch

Hallo, wir haben zur Zeit das Thema Kurven im  [mm] \IR^{n} [/mm] und ich verstehe nicht so ganz, was explizite Parametrisierung bedeutet. Kann mir das vielleicht jemand erklären. Wir sollen dann als Übung beweisen, dass Kurven im Falle einer expliziten Parametrisierung weder Doppelpunkte noch singuläre Stellen aufweisen. Hat da vielleicht jemand noch eine Idee?

Grüße mathmetzsch

        
Bezug
Explizite Parametrisierung: Anderer Thread
Status: (Antwort) fertig Status 
Datum: 21:01 Sa 28.05.2005
Autor: MathePower

Hallo,

> Hallo, wir haben zur Zeit das Thema Kurven im  [mm]\IR^{n}[/mm] und
> ich verstehe nicht so ganz, was explizite Parametrisierung
> bedeutet. Kann mir das vielleicht jemand erklären. Wir

Explizit heißt ja, daß die implizite Funktion [mm]f\left( {x_{1} ,\;...\;,\;x_{n - 1} ,\;x_{n} } \right)\; = \;0[/mm] in einer Umgebung eines Punktes lokal aufgelöst werden kann. Ist [mm]x_{n}[/mm] die Variable, nach der aufgelöst wurde, so schreibt sich dann die o.g. Funktion so:

[mm]x_{n} \; = \;g\left( {x_{1} ,\;...\;,\;x_{n - 1} } \right)[/mm]

> sollen dann als Übung beweisen, dass Kurven im Falle einer
> expliziten Parametrisierung weder Doppelpunkte noch
> singuläre Stellen aufweisen. Hat da vielleicht jemand noch
> eine Idee?

  
Siehe hier: Doppelpunkte/singuläre Stellen

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]