matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenExp. Funktion mit 2 Variabeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - Exp. Funktion mit 2 Variabeln
Exp. Funktion mit 2 Variabeln < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exp. Funktion mit 2 Variabeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Sa 24.08.2013
Autor: mary1004

Aufgabe
fa(x) = [mm] \bruch{a}{2} (e^{\bruch{x}{a}} [/mm] + [mm] e^{\bruch{-x}{a}}) [/mm] D=R, a>0
a) Bestimmen Sie den Tiefpunkt in Abhängigkeit von a!

Hallo an alle! :)

Ich muss eine Hausarbeit am Schuljahresbeginn abgeben, und ich stoße auf eine Schwierigkeit in dieser Aufgabe.

Hier mein Ansatz:
Ich habe zunächst die Funktion abgeleitet:
fa(x) = [mm] \bruch{a}{2} (e^{\bruch{x}{a}} [/mm] + [mm] e^{\bruch{-x}{a}}) [/mm]
[mm] fa'(x)=\bruch{a*(e^{\bruch{x}{a}} + e^{\bruch{-x}{a}})}{2} [/mm]
[mm] fa'(x)=\bruch{a*(e^{\bruch{\bruch{x}{a}}{a}} + e^{\bruch{\bruch{x}{a}}{a}})}{2} [/mm]

Ich komme aber nicht weiter, weil ich nicht weiß, ob man fa'(a)=0 oder fa'(x)=0 setzen oder nicht. Ich habe versucht, nach a zu lösen aber da hat sich nichts Richtiges ergeben... Ich glaube, dass ich mich von den 2 Variabeln erschrecken...

Ich habe über 2 Stunden damit verbracht, zu versuchen, diese Frage zu lösen, aber ich komme nicht weiter. Es wäre sehr nett von euch, mir zu erklären, wie man nach den Nullstellen der Ableitung einer exp. Funktion mit 2 Variabeln auflöst :) Vielen Dank!

Verzeihung für die Fehler, aber ich lerne Deutsch als Fremdsprache und mein Mathe-Unterricht wird teilweise auf Deutsch erteilt. Ich hoffe, dass meine Fragen klar waren :)

        
Bezug
Exp. Funktion mit 2 Variabeln: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 Sa 24.08.2013
Autor: MathePower

Hallo mary1004,

> fa(x) = [mm]\bruch{a}{2} (e^{\bruch{x}{a}}[/mm] + [mm]e^{\bruch{-x}{a}})[/mm]
> D=R, a>0
>  a) Bestimmen Sie den Tiefpunkt in Abhängigkeit von a!
>  Hallo an alle! :)
>  
> Ich muss eine Hausarbeit am Schuljahresbeginn abgeben, und
> ich stoße auf eine Schwierigkeit in dieser Aufgabe.
>  
> Hier mein Ansatz:
>  Ich habe zunächst die Funktion abgeleitet:
>  fa(x) = [mm]\bruch{a}{2} (e^{\bruch{x}{a}}[/mm] +
> [mm]e^{\bruch{-x}{a}})[/mm]
> [mm]fa'(x)=\bruch{a*(e^{\bruch{x}{a}} + e^{\bruch{-x}{a}})}{2}[/mm]

>


Das ist nicht ganz richtig.

Es fehlt die innere Ableitung der Expnentialfunktionen.

  

> [mm]fa'(x)=\bruch{a*(e^{\bruch{\bruch{x}{a}}{a}} + e^{\bruch{\bruch{x}{a}}{a}})}{2}[/mm]
>  
> Ich komme aber nicht weiter, weil ich nicht weiß, ob man
> fa'(a)=0 oder fa'(x)=0 setzen oder nicht. Ich habe
> versucht, nach a zu lösen aber da hat sich nichts
> Richtiges ergeben... Ich glaube, dass ich mich von den 2
> Variabeln erschrecken...
>  


Es ist [mm]f_{a}'\left(x\right)=0[/mm] zu setzen.


> Ich habe über 2 Stunden damit verbracht, zu versuchen,
> diese Frage zu lösen, aber ich komme nicht weiter. Es
> wäre sehr nett von euch, mir zu erklären, wie man nach
> den Nullstellen der Ableitung einer exp. Funktion mit 2
> Variabeln auflöst :) Vielen Dank!
>  


Setze dazu [mm]z=e^{\bruch{x}{a}}[/mm].


> Verzeihung für die Fehler, aber ich lerne Deutsch als
> Fremdsprache und mein Mathe-Unterricht wird teilweise auf
> Deutsch erteilt. Ich hoffe, dass meine Fragen klar waren :)


Gruss
MathePower

Bezug
                
Bezug
Exp. Funktion mit 2 Variabeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 Sa 24.08.2013
Autor: mary1004

Vielen Dank für ihre Hilfe, aber mein Ergebnis sieht sehr komisch aus, und ich weiß nicht wie ich am Ende z in x umforme.

Soweit bin ich:
[mm] a\cdot{}(e^{\bruch{z}{a}} [/mm] + [mm] e^{\bruch{z}{a}}) [/mm] = 0
[mm] {\bruch{1}{2z}} [/mm] = [mm] a^3 [/mm]
z= [mm] {a^3}{1/2} [/mm]
z= [mm] 2a^3 [/mm]

Entschuldigung dafür, dass ich erst langsam verstehe.

Bezug
                        
Bezug
Exp. Funktion mit 2 Variabeln: Innere Ableitung
Status: (Antwort) fertig Status 
Datum: 17:55 Sa 24.08.2013
Autor: Infinit

Hallo mary,
die innere Ableitung der Exponentialfunktion fehlt immer noch, weswegen das Ergebnis nicht stimmt.
Viele Grüße,
Infinit

By the way: Deine Variable, nach der Du ableitest, ist x. Das a behandelst Du zunächst als Konstante bei der Ableitung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]