matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationExistenz einer Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Existenz einer Reihe
Existenz einer Reihe < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz einer Reihe: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:59 Mo 12.05.2008
Autor: JanJan

Aufgabe
Untesuchen Sie mi Hilfe eines geeigneten Integals, ob die Reihe:
[mm] \summe_{n=1}^{\infty} \bruch{1}{n}\left( \bruch{\pi}{2} - arctan(n)\right) [/mm]
konvergiert.

Hallo!

Irgendwie komme ich bei dieser Aufgabe einfach nicht weiter :/

Meine Strategie ist, ein uneigentliches Integral zu nehmen, zu zeigen, dass es existiert und somit die Aufgabe zu lösen, das ist aber leider doch nicht ganz so einfach ...

Als "geeignetes uneigentliches Integral" wähle ich:

[mm] \integral_{1}^{\infty}{\bruch{1}{x}\left( \bruch{\pi}{2} - arctan(x)\right) dx} [/mm]

Die Reihe fängt ja auch erst bei $n = 1$ an, also braucht mein Integral ja auch nicht vorher zu beginnen.

Ich habe die Vermutung, dass das Integral existiert, da [mm] \bruch{1}{x} [/mm] gegen 0 geht und [mm] \left( \bruch{\pi}{2} - arctan(x)\right) [/mm] auch.

Doch jetzt fangen meine Sorgen erst richtig an:
Um zu zeigen, dass dieses Integral existiert suche ich eine geeignete Majorante. (ich habs sogar schon mit Potenzreihen um den Entwicklungspunkt [mm] $x_{0} [/mm] = 1$ probiert, aber das war eher ein Schuss in den Ofen, weil dabei keine verwertbaren Regelmäßigkeiten auftraten...)

Ich hab mir mal beide Funktionen geplottet angeschaut und dabei kam heraus, dass [mm] \bruch{1}{x} [/mm] nen Tick größer zu seien scheint, als [mm] \left( \bruch{\pi}{2} - arctan(x)\right), [/mm] also würde ich gerne [mm] \bruch{1}{x}*\bruch{1}{x} [/mm] als Majorante verwenden, aber wie zeige ich, dass dies auch wirklich eine Majorante ist? Ist es im Endeffekt doch keine?

Denn wenn man sich die Steigungen mal anschaut, sieht man, dass sich [mm] \bruch{1}{x} [/mm] schneller an die x-Achse anschmiegt als [mm] \left( \bruch{\pi}{2} - arctan(x)\right): [/mm]

[mm] -\bruch{1}{x^{2}} [/mm] < [mm] -\bruch{1}{1+^{2}} [/mm]

Ist [mm] \bruch{1}{x} [/mm] also doch keine gute Majorante für [mm] \left( \bruch{\pi}{2} - arctan(x)\right) [/mm] und bin ich auf einem totalen Holzweg?

mfg JanJan

        
Bezug
Existenz einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:50 Mo 12.05.2008
Autor: bamm

Ich bin mir bei bei deiner Aufgabe nicht wirklich sicher, deswegen nur als Mitteilung: Warum das ganze mit Majorante, usw.? Beim Integralkriterium rechnet man doch einfach das Integral aus (wenn f(x) monoton fallend ist, nur positive Werte annimmt und ab einem bestimmten Wert p definiert ist). Wenn das Integral einen endlichen Wert annimmt, dann konvergiert die Reihe.

Bezug
                
Bezug
Existenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:37 Mo 12.05.2008
Autor: JanJan

Ich habe jetzt mal probiert, deinen Tipp umzusetzen, nur das Problem ist, dass sich das Integral:

$ [mm] \integral_{1}^{\infty}{\bruch{1}{x}\left( \bruch{\pi}{2} - arctan(x)\right) dx} [/mm] $

einfach nicht vernünftig lösen lässt.  (Mit partieller Integration kommt man da auf geradezu abenteuerliche Terme ;) Und wie ich es auch probiere, es kommt nur heraus, dass das Integral nicht existiert.

Bei meinem Versuch eine Lösung des Integrals mit Derive zu finden, bin ich auch nicht auf eine Lösung gekommen, sondern Derive spuckte folgendes aus: [mm] $\infty*Sign(\pi-180)$ [/mm] Meiner Meinung nach, ist das doch das gleiche wie [mm] \infty, [/mm] oder?

Langsam komme ich zu dem Schluss, dass dieses Integral doch nicht existiert, aber wie kann ich das jetzt am besten zeigen?
Durch eine geeignete Minorante? Nur welche?

Bezug
                        
Bezug
Existenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 00:47 Di 13.05.2008
Autor: Merle23

Ein kurzer Blick in die Wikipedia sagt [mm] \bruch{\pi}{2}-arctan(x)=arctan(\bruch{1}{x}) [/mm] für x>1. Ausserdem gilt arctan(x)<x für x>0.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]