matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeEuklidischer Vektorraum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Euklidischer Vektorraum
Euklidischer Vektorraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Euklidischer Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Di 24.04.2007
Autor: stepri2003

Aufgabe
Sei (V, [mm] $\langle \cdot, \cdot \rangle)$ [/mm] ein Euklidischer Vektorraum und | [mm] $\cdot$ [/mm] | die durch |x| = [mm] $\wurzel{\langle x, x \rangle} [/mm] definierte Norm. Zeigen Sie:
1. Satz des Thales: $|x| = |y| [mm] \Leftrightarrow [/mm] (x - y) [mm] \perp [/mm] (x + y)$,
2. Parallelogrammgleichung: $|x + [mm] y|^2 [/mm] + |x - [mm] y|^2 [/mm] = [mm] 2|x|^2 [/mm] + [mm] 2|y|^2$, [/mm]
3. [mm] $\langle [/mm] x, y [mm] \rangle [/mm] = [mm] \bruch{|x+y|^2 - |x-y|^2}{4}$ [/mm]

wie mache ich das?

        
Bezug
Euklidischer Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:23 Di 24.04.2007
Autor: stepri2003

Aufgabe
Sei [mm] $|\cdot |_\infty: \IR^n \rightarrow \IR$ [/mm] mit [mm] $|(x_1, [/mm] ..., [mm] x_n)^t|_\infty [/mm] := [mm] \max\{|x_i| : i = 1, . . . , n\}$. [/mm] Zeigen Sie mit Hilfe der ersten Aufgabe, dass diese Norm nicht durch ein Skalarprodukt induziert wird. D.h. es gibt kein Skalarprodukt [mm] $\langle \cdot, \cdot \rangle_\infty$ [/mm] mit [mm] $|x|_\infty [/mm] = [mm] \wurzel{\langle x, x \rangle_\infty}$. [/mm]

wie geht das?

Bezug
                
Bezug
Euklidischer Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Di 24.04.2007
Autor: komduck

Für n = 1 ist die Aussage falsch.
Wir können sie nur für n [mm] \ge [/mm] 2 beweisen.
Wir müssen nur 2 Vektoren finden, sodaß die Parallelogrammgleichung
nicht gilt. z.B (1,0,0,0...) und (0,1,0,0...) wenn wir die
Vektoren so wählen, dass nur die erste und zweite Komponente
ungleich Null ist, dann haben wir nur n [mm] \ge [/mm] 2 verwendet.

komduck

Bezug
        
Bezug
Euklidischer Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Di 24.04.2007
Autor: komduck

Du ersetzt [mm] |x|^2 [/mm] durch durch die Definition <x,x> und dann verwendest
du die Bilinearität von <x,y>.
Im Fall 2.Parallelogrammgleichung sieht das so aus:
|x + [mm] y|^2 [/mm] + |x - [mm] y|^2 [/mm] = <x+y,x+y> + <x-y,x-y>
= <x,x> + <x,y> + <y,x> + <y,y> + <x,x> - <x,y> - <y,x> + <y,y>
= 2<x,x> + 2<y,y>
= [mm] 2|x|^2 [/mm] + [mm] 2|y|^2 [/mm]

mfg komduck

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]