Euklidischer Raum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:49 So 05.02.2006 | Autor: | dump_0 |
Hallo.
Ich bin gerade bei einer Wiederholung auf folgende Aufgabe gestoßen mit der ich leider nicht zurecht komme:
Es sei [mm] \IR^3 [/mm] der eukl. Raum mit dem Standardskalarprodukt, [tex]W = \{(x_1, x_2, x_3) | 2x_1 - x_2 + 2x_3 = 0\}[/tex] und [tex]v = \vektor{1 \\ 2 \\ 3}[/tex].
(i) Bestimmen Sie [tex]W^ \perp[/tex].
(ii) Bestimmen Sie die orth. Projektion von v auf W
(iii) Bestimmen Sie den Abstand [tex]dist(v, W)[/tex].
zu (i): Ich weiß das sich der Vektorraum V aus dem Unterraum W und [tex]W^\perp[/tex] zusammensetzt, also [tex]V = W + W^\perp[/tex].
Somit ist [tex]W^\perp = V - W[/tex], also [tex]W^\perp = \vektor{1 \\ 2 \\ 3} - \vektor{x_1 \\ x_2 \\ x_3}[/tex].
Jetzt weiß ich aber nicht was ich mit der Def. von W anfangen kann, also das [tex]2x_1 - x_2 + 2x_3 = 0[/tex] ist. Soll ich etwa [tex]W^\perp = \vektor{1 - 2x_1, 2 + x_2, 3 - 2x_3}[/tex] setzen und dann jeweils [mm] x_1 [/mm] bis [mm] x_3 [/mm] ausrechnen ? Ich sehe da aber nicht wirklich einen Zusammenhang das so zu machen.
zu (ii): Hier weiß ich nur das es eine Abb. [tex]P_W: V \to W: v \mapsto w[/tex] gibt, sodass [tex]w = \summe_{i=1}^{r} v_i[/tex] ist. Weiter komme ich leider nicht.
zu (iii): [tex]dist(v, W) = |v - w| = |(1,2,3) - (x_1, x_2, x_3)|[/tex]. Das wars dann auch schon wieder, weiter komme ich nicht.
Wäre nett wenn mir jemand helfen könnte :)
Mfg
[mm] dump_0
[/mm]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:04 So 05.02.2006 | Autor: | leduart |
Hallo dump
> Es sei [mm]\IR^3[/mm] der eukl. Raum mit dem Standardskalarprodukt,
> [tex]W = \{(x_1, x_2, x_3) | 2x_1 - x_2 + 2x_3 = 0\}[/tex] und [tex]v = \vektor{1 \\ 2 \\ 3}[/tex].
>
> (i) Bestimmen Sie [tex]W^ \perp[/tex].
> (ii) Bestimmen Sie die orth.
> Projektion von v auf W
> (iii) Bestimmen Sie den Abstand [tex]dist(v, W)[/tex].
>
> zu (i): Ich weiß das sich der Vektorraum V aus dem
> Unterraum W und [tex]W^\perp[/tex] zusammensetzt, also [tex]V = W + W^\perp[/tex].
>
> Somit ist [tex]W^\perp = V - W[/tex], also [tex]W^\perp = \vektor{1 \\ 2 \\ 3} - \vektor{x_1 \\ x_2 \\ x_3}[/tex].
Du kannst doch nicht V-W bilden, indem du einen beliebigen Vektor aus v nimmst und irgendeinen aus W abziehst! ausserdem woher weisst du das v nicht in W liegt.?
1. richtiger Schritt: Fesstellung: W ist 2 dim, denn ich hab nur eine Gl. also dim(Kern)=1 und dim(V)=dim(Bild)+Dim(Kern) fast der wichtigste satz der lin Alg.!
jetzt such eine Basis für W, z.Bsp e1:x1=0,x2=1 x3=1/2. undee2: x1=1, x2=0 x3=-1. geht natürlich auch mit anderer Wahl, aber hier sieht man direkt die lin Unabhängikkeit. Damit haben wir eine Basis von W,
[mm] W^\perp [/mm] ist 1 dim also such ich einen Vektor der senkrecht auf e1 und e2 steht. d.h. Skalarprodukt mit e1 und mit e2 muss 0 sein. daraus 2 Gl. für y1.y2,y3. wieder einen bel. wählen . frtig, ich hab Basis von [mm] W^\perp.
[/mm]
Den Rest probier jetzt mal allein!
Gruss leduart
|
|
|
|