matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperErzeugnisse in Untergruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Erzeugnisse in Untergruppen
Erzeugnisse in Untergruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erzeugnisse in Untergruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:07 Mo 26.02.2007
Autor: Leader

Aufgabe
"Natürlich kann man eine abelsche Gruppe auch "multiplikativ" schreiben. Sei (G, [mm] \circ) [/mm] eine Gruppe. Wie lautet dann das Erzeugnis von g1, g2, ... gk [mm] \in [/mm] G? Wie lautet z. B. das Erzeugnis von 2, 3, 5 [mm] \in \IQ [/mm] * ? Sind die Untergrupen <2> und <-2> von Q* identisch?"

Hallo.

Dies ist ein Auszug aus unserem Skript von Lineare Algebra. Auf diese Frage gibt es in dem Skript jedoch keine Antwort und ich würde gern wissen, wie man bei diesen Fragen herangeht bzw. was die Lösung ist?

Die Frage für mich ist also: Was ist das Erzeugnis von 2, 3 und 5 in Q (und wie berechnet man es).
Und: Sind die Untergruppen <2> und <-2> identisch (und wenn ja bzw. wenn nicht, warum).


Freundliche Grüße,
Leader.

        
Bezug
Erzeugnisse in Untergruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:05 Mi 28.02.2007
Autor: angela.h.b.


> "Natürlich kann man eine abelsche Gruppe auch
> "multiplikativ" schreiben. Sei (G, [mm]\circ)[/mm] eine Gruppe.

Hallo,

ich verstehe das so:

Wie

> lautet dann das Erzeugnis von g1, g2, ... gk [mm]\in[/mm] G?

[mm] =\{g_1^{t_1}*g_2^{t_2}* ...*g_k^{t_k}\ t_1,t_2,...,t_k \in \IZ\}, [/mm] also sämtliche Produkte, dei man aus den [mm] g_i [/mm] und ihren Inversen bilden kann.

Wie

> lautet z. B. das Erzeugnis von 2, 3, 5 [mm]\in \IQ[/mm] * ?

<2, 3, [mm] 5>=\{2^{t_1}*2^{t_2}* 5^{t_3}\ t_1,t_2,t_3 \in \IZ\} [/mm]

Sind die

> Untergrupen <2> und <-2> von Q* identisch?"

[mm] <2>=\{2^t| t\in \IZ\} [/mm]
[mm] <-2>=\{(-2)^t| t\in \IZ\}, [/mm] ob die gleich sind, mögest Du entscheiden.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]