matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraErzeugendensystem und Basis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Erzeugendensystem und Basis
Erzeugendensystem und Basis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erzeugendensystem und Basis: hausaufgaben
Status: (Frage) beantwortet Status 
Datum: 17:22 Do 26.04.2007
Autor: wulfstone

Aufgabe
Wir betrachten folgende Teilmengen des  [mm] \IR^{3}: [/mm]

$ U:= [mm] \left\{ \vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 1}, \vektor{1 \\ 0 \\ 0} \right\}$ [/mm]
$ V:= [mm] \left\{ \vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 1}, \vektor{0 \\ 0 \\ 1} \right\}$ [/mm]
$ W:= [mm] \left\{ \vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 0}, \vektor{0 \\ 1 \\ 1}, \vektor{0 \\ 0 \\ 1} \right\}$ [/mm]


Welche dieser Mengen bilden ein Erzeugendensystem und welche eine Basis des [mm] \IR^{3} [/mm]

hallo erstmal,
es soll eigentlich ganz einfach sein,
doch habe ich probleme mir das erzeugendensystem und die basis vorzustellen, bzw. sind unsere definitionen dafür sehr dürftig,

könnte mir mal jemand zumindest an einer menge zeigen wie das geht,

danke

mfg
wulfstone

        
Bezug
Erzeugendensystem und Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 Do 26.04.2007
Autor: Bastiane

Hallo wulfstone!

> Wir betrachten folgende Teilmengen des  [mm]\IR^{3}:[/mm]
>  
> [mm]U:= \left\{ \vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 1}, \vektor{1 \\ 0 \\ 0} \right\}[/mm]
>  
> [mm]V:= \left\{ \vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 1}, \vektor{0 \\ 0 \\ 1} \right\}[/mm]
>  
> [mm]W:= \left\{ \vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 0}, \vektor{0 \\ 1 \\ 1}, \vektor{0 \\ 0 \\ 1} \right\}[/mm]
>  
>
> Welche dieser Mengen bilden ein Erzeugendensystem und
> welche eine Basis des [mm]\IR^{3}[/mm]
>  hallo erstmal,
>  es soll eigentlich ganz einfach sein,
>  doch habe ich probleme mir das erzeugendensystem und die
> basis vorzustellen, bzw. sind unsere definitionen dafür
> sehr dürftig,

Naja, aber Definitionen kann man doch nachlesen. Und gerade so elementare Definitionen finden sich in jedem passenden Mathebuch, und auch in Wikipedia und sonst im Internet.

Für ein Erzeugendensystem musst du jeden Vektor des Vektorraums erzeugen können. In deinem Fall hast du den [mm] \IR^3, [/mm] das heißt, du musst in jeder Komponente etwas erzeugen können, bzw. auch jede reelle Zahl erzeugen können. Hättest du also z. B. drei Vektoren: [mm] \vektor{0\\1\\0}, \vektor{0\\0\\0} [/mm] und [mm] \vektor{0\\0\\1}, [/mm] so könntest du für die zweite und dritte Komponente jede relle Zahl erzeugen (mit reellen Koeffizienten in einer Linearkombination), aber egal, welchen Koeffizienten du wählst, du wirst nie eine Zahl außer 0 in der ersten Komponenten erzeugt bekommen. Demnach wäre dies kein Erzeugendensystem, weil eben nur Elemente der Form [mm] \vektor{0\\a\\b} [/mm] für [mm] a,b\in\IR [/mm] erzeugt werden können.

Jede Basis ist auch ein Erzeugendensystem (aber nicht umgekehrt), oder jedes linear unabhängige Erzeugendensystem ist auch eine Basis. Wenn du also etwas hast, was kein Erzeugendensystem ist, kann es auch keine Basis sein. Wenn du ein Erzeugendensystem hast, musst du überprüfen, ob die Vektoren linear unabhängig sind, wenn ja, hast du eine Basis, wenn nein, ist es bloß ein Erzeugendensystem.

In deinem Fall kannst du nun auch noch überlegen, dass alle Basen zu einem Vektorraum genauso viele Elemente haben. Sollten also U oder V eine Basis sein, kann W keine sein, weil W eine Dimension mehr hat. Außerdem kannst du wissen, dass eine Basis des [mm] \IR^3 [/mm] genau 3 Basisvektoren hat, demnach kann W sowieso schon keine Basis sein.

Es gibt da noch einiges anderes, was man sich überlegen kann, ist aber hier vielleicht nicht nötig. Und das kannst du bei Gelegenheit in Bücher oder im Netz lesen.

Viele Grüße
Bastiane
[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]