matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErzeugende Fkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Erzeugende Fkt.
Erzeugende Fkt. < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erzeugende Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:19 So 11.04.2010
Autor: jaruleking

Aufgabe
Betrachten Sie die Funktion [mm] f(t)=\bruch{1}{3}(1+t+t^2). [/mm]

Existiert eine diskrete ZV X, so dass f die erzeugende Funktion von X ist? Falls ja, geben Sie die Verteilung von X an, falls nein begründen Sie Ihre Antwort.

Hi,

also ich denke, dass es für [mm] f(t)=\bruch{1}{3}(1+t+t^2) [/mm] keine diskrete ZV X gibt, so dass f(t) die erzeugende Fkt. darstellt.

Für eine erzeugende Fkt. gilt ja: [mm] g_X(t)=\summe_{k=0}^{\infty}P(X=k)*t^k [/mm]

So, wir sehen ja jetzt, dass in f(t) gar kein [mm] t^k [/mm] vorkommt, so dass es auch keine Verteilungsfkt. P(X=k) geben kann.

was denkt ihr??

Grüße

        
Bezug
Erzeugende Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 So 11.04.2010
Autor: steppenhahn

Hallo!

> Betrachten Sie die Funktion [mm]f(t)=\bruch{1}{3}(1+t+t^2).[/mm]
>  
> Existiert eine diskrete ZV X, so dass f die erzeugende
> Funktion von X ist? Falls ja, geben Sie die Verteilung von
> X an, falls nein begründen Sie Ihre Antwort.
>  Hi,
>  
> also ich denke, dass es für [mm]f(t)=\bruch{1}{3}(1+t+t^2)[/mm]
> keine diskrete ZV X gibt, so dass f(t) die erzeugende Fkt.
> darstellt.
>  
> Für eine erzeugende Fkt. gilt ja:
> [mm]g_X(t)=\summe_{k=0}^{\infty}P(X=k)*t^k[/mm]
>  
> So, wir sehen ja jetzt, dass in f(t) gar kein [mm]t^k[/mm] vorkommt,
> so dass es auch keine Verteilungsfkt. P(X=k) geben kann.

??? k ist doch die "Laufvariable" der Summe? Das wird natürlich nicht im obigen Polynom vorkommen.

> was denkt ihr??


Ich kenne mich mit erzeugenden Funktionen etc. nicht wirklich aus.
Aber gemäß deiner Formel könnte doch einfach die diskrete ZV mit

P(X=0) = [mm] \frac{1}{3}, [/mm]
P(X=1) = [mm] \frac{1}{3}, [/mm]
P(X=2) = [mm] \frac{1}{3} [/mm]

und

[mm] $P(X\ge [/mm] 3) = 0$

nehmen?
Das wäre eine Zähldichte, denn alle Werte sind größer 0 und insgesamt kommt 1 raus.

Grüße,
Stefan

Bezug
                
Bezug
Erzeugende Fkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:38 So 11.04.2010
Autor: jaruleking

hmmm,

hast natürlich recht.

danke dir

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]