matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieErwartungswert Brownsche Beweg
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Erwartungswert Brownsche Beweg
Erwartungswert Brownsche Beweg < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert Brownsche Beweg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Di 30.06.2009
Autor: honey

Hallo,
für eine Ausarbeitung sitzte ich gerade an einem Beweis, bei dem ich leider den Knackpunkt nicht verstehe.
Ich muss zeigen, dass
E[mm] (\left| B(1) \right|^{-\alpha})=\int_{-\infty}^{\infty}\bruch{1}{\wurzel{2\pi}^d}\bruch{1}{{\left|z \right|^{\alpha}}} e^\bruch{-\left|z \right|^2}{2}\, dz [/mm]
endlich, also eine Konstante, abhängig von der Dimension d und [mm]\alpha[/mm] ist.
Für [mm] \left|z \right|^{-\alpha}\le1[/mm] wäre das Integral doch von oben durch [mm]\bruch{\wurzel{\pi}}{\wurzel{2\pi}^d}[/mm] beschränkt oder habe ich da einen Denkfehler?
Wie kann ich denn für die anderen z argumentieren?

Danke schonmal im Voraus,
honey


        
Bezug
Erwartungswert Brownsche Beweg: Antwort
Status: (Antwort) fertig Status 
Datum: 08:49 Mi 01.07.2009
Autor: wauwau

Also es genügt im wesentlichen zu zeigen

[mm] \integral_{1}^{n}{e^\bruch{-x^2}{2} dx} [/mm] ist gleichmäßig beschränkt für alle n

(wegen Symmetrie des Integranden und Beschränktheit des Integranden im endl. Intervall [0,1])

der integrand ist aber in [1,n] stets kleiner als
[mm]xe^\bruch{-x^2}{2}[/mm]

und das Integral über diesen integranden kannst du explizit berechnen.
Dann zeigst du das Ergebnis beschränkt ist....

Bezug
                
Bezug
Erwartungswert Brownsche Beweg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:19 Mi 01.07.2009
Autor: honey

Hi und Danke für die Antwort.
Dass für
[mm]\left| z \right|^{-\alpha}\le1[/mm] also für [mm]\left| z \right|\ge1[/mm] das Integral beschränkt ist war mir  klar. Wie zeige ich es denn für das Intervall [-1,1] bzw aus Symmetriegründen [0,1] ?

Lg honey

Bezug
                        
Bezug
Erwartungswert Brownsche Beweg: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 Mi 01.07.2009
Autor: wauwau

wenn, was sicher der Fall ist
[mm]0 \le \alpha < 1 [/mm] gilt, kannst du den Integranden ja in [0,1] durch
[mm] C.z^{-\alpha}[/mm] mit geeignetem C
abschätzen

ist [mm] \alpha [/mm] größer 1 geht in diesem Intervall die Endlichkeit flöten

Bezug
                                
Bezug
Erwartungswert Brownsche Beweg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 Mi 01.07.2009
Autor: honey

Hi,
leider ist [mm]0<\alpha<2[/mm]

Lg honey

Bezug
                                        
Bezug
Erwartungswert Brownsche Beweg: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Mi 01.07.2009
Autor: wauwau

dann ist das Integral in [0,1] aber nicht mehr beschränkt, da die Abschätzung von vorher nach Integration was Unlimitiertes liefert..

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]