matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikEreignisse unabhängig?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Ereignisse unabhängig?
Ereignisse unabhängig? < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ereignisse unabhängig?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:48 Di 09.10.2007
Autor: ernstl

Aufgabe
Im Jahresbericht 1960/1961 des Keppler-Gymnasium in Weiden steht folgende Tabelle für die insgesamt 1438 Schüler:
A: "Der Schüller ist evangelisch"
B: "Der Schüler wohnt in Weiden"

[mm] \cap [/mm]     | A            [mm] \overline{A} [/mm] |  Summe
------------------------------------------------
  B        | 137             634 | 671
  [mm] \overline{B} [/mm]     | 137             634 | 671
---------------------------------------------------
SUMME | 296             1187 | 1483

Sind die Eigenschaften A und B unabhängige Ereignisse im Sinne der Wahrscheinlichkeitstheorie?

Kann mir bitte jemand bitte eine Lösung und kurze Erklärung zu dieser Aufgabe geben?

Bitte keine Links angeben mit "lies mal erst hier". Ich schreibe morgen Nachmittag eine Klausur und ich Poste nun noch ein paar Aufgaben, die ich nicht selber verstanden und keine Lösung habe und die ich noch auf die Schnelle mir reinprügeln will ;-).
Bitte verzeiht mir, dass ich mehrere Aufgaben mit dem gleichen Fragetext hier stelle. Ich habe mich zuerst selber an den Aufgaben versucht, aber hoffe auf kurze Hilfe von euch bei den letzten Aufgaben.

Grüße
Ernst

        
Bezug
Ereignisse unabhängig?: Antwort
Status: (Antwort) fertig Status 
Datum: 11:11 Mi 10.10.2007
Autor: koepper

Hallo,

also mal Ernst ;-)
"auf die Schnelle reinprügeln" ist in Mathematik jedenfalls völlig sinnlos. So kannst du vielleicht Geschichte und Gedichte lernen, aber kein Mathe. Denn sobald eine Aufgabe leicht abgewandelt kommt, stehst du da, wie der berühmte Ochse vorm Berg, wenn du nichts verstanden und nur auswendig gelernt hast.
Außerdem solltest du eine Eigenschaft des menschlichen Geistes gut verstehen:
Er entledigt sich sehr schnell aller Dinge, die nicht in einem Zusammenhang stehen mit dem, was er "verstanden" hat.
Daher lautet eine wichtige Didaktische Regel: Zusammenhänge herstellen mit bereits bekanntem!

Du wirst sehen, daß alles was du dir "reinprügelst" schon kurz nach der Klausur verschwunden ist, als wäre es nie dagewesen. Zur nächsten Klausur darfst du es dir dann also noch einmal reinprügeln.

Offenbar verschwendest du damit erheblich Zeit.

Zur Aufgabe möchte ich nur den Hinweis geben:

2 Ereignisse sind unabhängig, wenn das Eintreten oder Nichteintreten des einen Ereignisses die Wahrscheinlichkeit für das Eintreten des anderen Ereignisses nicht beeinflusst. Mathematisch:

[mm] $P_B(A) [/mm] = P(A)$ Übersetzt: Die Wahrscheinlichkeit, daß A eintritt, wenn B schon eingetreten ist, ist genau so hoch, wie die Wahrscheinlichkeit, daß A überhaupt eintritt.

Nützlich ist auch die folgende äquivalente Schreibweise: $P(A [mm] \cap [/mm] B) = P(A) * P(B)$.

Übersetzt: Die Wahrscheinlichkeit, daß die Ereignisse A und B zusammen eintreten ist so groß wie das Produkt der einzelnen Eintrittswahrscheinlichkeiten.

Mit diesem letzten Kriterium kannst du leicht deine Aufgabe lösen.

Ich hoffe, dieser Beitrag regt dich zm Nachdenken an!

Liebe Grüße
Will



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]