matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisEndliche Untergruppe in C*
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Endliche Untergruppe in C*
Endliche Untergruppe in C* < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endliche Untergruppe in C*: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:42 Mi 18.05.2011
Autor: Rubstudent88

Aufgabe 1
Es sei G eine endliche Untergruppe in [mm] \IC^{\*}. [/mm] Zeigen Sie:
a) G [mm] \subset S^{1}=\{z\in\IC | |z|=1 \} [/mm]


Aufgabe 2
b) Es existiert ein n [mm] \in \IN, [/mm] so dass [mm] G=\{z\in\IC | z^{n}=1 \} [/mm] gilt.


Hallo zusammen,

mir fehlen bei obiger Aufgabe die richtige Ideen. Ich denke, dass ich die Untergruppenaxiome benutzen kann:
G ist nicht leer; a,b [mm] \in [/mm] G [mm] \Rightarrow [/mm] a*b [mm] \in [/mm] G; a [mm] \in [/mm] G [mm] \Rightarrow a^{-1} \in [/mm] G

[mm] \IC^{\*}=\IC [/mm] \ [mm] \{0 \} [/mm]

Zu a)
Hier habe ich mir überlegt, dass wenn G nicht in [mm] S^{1} [/mm] liegt, dann kann G nicht endlich sein. Ist das zu zeigen?


Zu b)
Hier fehlt mir auch ein der Ansatz. Einerseits liegt G in [mm] S^{1}, [/mm] also muss es anschaulich ein n [mm] \in \IN [/mm] geben. Andererseits habe ich mir überlegt, dass man irgendwie mit Winkel arbeiten kann, die die Menge erzeugen?

Wäre cool, wenn ich ein paar Anstupser bekäme :).

Beste Grüße

        
Bezug
Endliche Untergruppe in C*: Antwort
Status: (Antwort) fertig Status 
Datum: 13:10 Mi 18.05.2011
Autor: fred97


> Es sei G eine endliche Untergruppe in [mm]\IC^{\*}.[/mm] Zeigen
> Sie:
>  a) G [mm]\subset S^{1}=\{z\in\IC | |z|=1 \}[/mm]
>  
> b) Es existiert ein n [mm]\in \IN,[/mm] so dass [mm]G=\{z\in\IC | z^{n}=1 \}[/mm]
> gilt.
>  
> Hallo zusammen,
>  
> mir fehlen bei obiger Aufgabe die richtige Ideen. Ich
> denke, dass ich die Untergruppenaxiome benutzen kann:
> G ist nicht leer; a,b [mm]\in[/mm] G [mm]\Rightarrow[/mm] a*b [mm]\in[/mm] G; a [mm]\in[/mm] G
> [mm]\Rightarrow a^{-1} \in[/mm] G
>  
> [mm]\IC^{\*}=\IC[/mm] \ [mm]\{0 \}[/mm]
>  
> Zu a)
>  Hier habe ich mir überlegt, dass wenn G nicht in [mm]S^{1}[/mm]
> liegt, dann kann G nicht endlich sein. Ist das zu zeigen?
>  
>
> Zu b)
>  Hier fehlt mir auch ein der Ansatz. Einerseits liegt G in
> [mm]S^{1},[/mm] also muss es anschaulich ein n [mm]\in \IN[/mm] geben.
> Andererseits habe ich mir überlegt, dass man irgendwie mit
> Winkel arbeiten kann, die die Menge erzeugen?
>  
> Wäre cool, wenn ich ein paar Anstupser bekäme :).

Zu a) gebe ich Dir einen Stupser, vielleicht reicht der dann auch für b)

Ist n die Anzahl der Elemente von G (also die Ordnung von G), so ist

                    [mm] $z^n=1$ [/mm]  für jedes z [mm] \in [/mm] G.

Wie fällt dann |z| aus ?

FRED

>  
> Beste Grüße


Bezug
                
Bezug
Endliche Untergruppe in C*: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:32 Mi 18.05.2011
Autor: Rubstudent88

Danke Fred für den Stupser :).

Da G endlich ist, gilt deine Bedingung $ [mm] z^n=1 [/mm] $  für jedes z $ [mm] \in [/mm] $ G.?

D.h. |z| muss = 1 sein. Da G eine endliche Untergruppe in [mm] \IC^{\*} [/mm] ist, ist G [mm] \subset S^{1} [/mm] also bin ich fertig?

Zu b dann: Da G endlich ist, muss ein n [mm] \in \IN [/mm] existierten, so dass [mm] z^{n}=1. [/mm] Da G [mm] \subset S^{1} [/mm] gilt die Bedingung für ein z [mm] \in \IC [/mm] ?

Bezug
                        
Bezug
Endliche Untergruppe in C*: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Fr 20.05.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]