matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenElliptisch, hyperbolisch,...
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Partielle Differentialgleichungen" - Elliptisch, hyperbolisch,...
Elliptisch, hyperbolisch,... < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elliptisch, hyperbolisch,...: Aufgabe / Idee
Status: (Frage) überfällig Status 
Datum: 14:31 Sa 13.11.2010
Autor: mathematik_graz

Aufgabe
In welchen Gebieten in [mm] R^{2} [/mm] sind die Differentialgleichungen
[mm] (y^{2}+1)u_{xx}+2xu_{xy}+4u_{yy}-u^{2}u_{y}=x-y [/mm]
[mm] u_{xx}+2xuu_{xy}+yu_{yy}+xu_{x}=1 [/mm]
elliptisch, parabolisch oder hyperbolisch?

Ist meine Idee richtig, dass ich mir die Matrix der höchsten Ableitungen aufstelle und dann untersuche ob sie positiv, semi definit oder nicht definit ist?
so wie es hier beschrieben ist:
http://www.mathepedia.de/Partielle_Differentialgleichungen.aspx

das problem bei der methode sehe ich vor allem darin, dass in der zweiten gleichung ein [mm] u*u_{xy} [/mm] steht und ich dieses u in die matrix mit nehmen müsste!

bin ich mit der idee am holzweg oder geht das in die richtige richtung?!


        
Bezug
Elliptisch, hyperbolisch,...: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mo 15.11.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]