matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikElektrostatik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Physik" - Elektrostatik
Elektrostatik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elektrostatik: Aufgabe/Idee
Status: (Frage) beantwortet Status 
Datum: 10:41 Do 07.07.2011
Autor: Timberbell

Aufgabe
Die elektrischen Ladungen befinden sich jeweils, an den Ort +q(x=a,y=o) und -q(x=-a,y=0)
Ich soll das elekt. Feld E(y)=E(x=0,y) als Funkt. von y auf der x Achse angeben


Hallo,

Ich habe ein Verständnis Problem.

Die Formel um diese Aufgabe zulösen lautet folgendermaßen:

E = q/4*pi*Eo * r / [mm] |r^3| [/mm]

Die Radien sind jeweils r1 = (a, 0) und r2 = (-a,o)

In der Lsg steht nun folgendes:

E(x=o)= -q/4*pi*Eo * ( [mm] [red](a,-y)[/red]/sqrt(a^2+b^2) [/mm] - [mm] [red](a,-y)[/red]/sqrt(a^2+b^2)) [/mm] * [mm] 1/(a^2+y^2) [/mm]

Wie komme ich auf die Rotmarkierten Vektoren?

Ich hätte nun für, q+ r = ( a - 0 , 0 - y ) und q- r= (-a-0 , 0-y) gerechnet.

Kann mir einer Helfen, Vielen Dank

Grüße Timber



        
Bezug
Elektrostatik: Antwort
Status: (Antwort) fertig Status 
Datum: 11:55 Do 07.07.2011
Autor: leduart

Hallo
1. das b in deiner formel soll wohl y heissen?
2. der Vektor [mm] \vec{r} [/mm] von der stelle A=(-a,0) zu B=(0,y)ist [mm] \vec{r}=B-A=\vektor{a\\y} [/mm] der von (a,0) nach B entsprechend [mm] \vektor{-a\\y} [/mm]
Für die Richtung von E wird dann noch mit +q bzw -q multipliziert, si dass der resultierende Vektor von E in negative x- Richtung zeigt .
warum Deine 2 Vektoren für pos y in neg y Richtung zeigen ist mir unklar. r ist der Vektor von der Ladung zu dem betrachteten Punkt.
Gruss leduart


Bezug
                
Bezug
Elektrostatik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:42 Do 07.07.2011
Autor: Timberbell

Danke Schön,

ich habe es nochmals durchgerechnet und bin dann auf der Ergebnis der Musterlsg. gekommen. Anscheinend sind die Zwischenschritte in der Lösung falsch. Am Ende gleich sich es, dann wieder aus.

Gruß

timber

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]