matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikElektrostatik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Physik" - Elektrostatik
Elektrostatik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elektrostatik: Ladungen
Status: (Frage) beantwortet Status 
Datum: 18:09 Mi 25.04.2007
Autor: murmel

[Dateianhang nicht öffentlich]
Hallo, ihr fleißigen Helfer!

Bei den obengenannten Aufgaben bin ich mir nicht sicher ob meine Lösungswege richtig, geschwiege denn, meine Lösungen richtig sind. Ich wäre euch sehr dankbar wenn ihr mir Rückkopplung geben würdet.



geg. : m = 0,1 g; g = 9,81 m/s²

ges.: ist die Ladung

Berechnung des Winkels [mm] \theta [/mm]

Ich dachte mir, dass der benötigte Winkel in unmittelbaren Zusammenhang mit der Coulombkraft steht.

Ich berechne also [mm] \theta [/mm]


[Dateianhang nicht öffentlich]
Bild 2

[mm] \sin \theta = \bruch{2}{20}[/mm]

[mm] \theta = \arcsin \left( \bruch{2}{20} \right) \approx 5,739° [/mm]

Dabei ist 2 [mm] \phi [/mm] = [mm] \theta. [/mm]

Hier stelle ich mir schon die erste Frage ob das stimmen kann.

Logisch wäre das insofern, dass die aufzuwendende Coulomb-Kraft proportional dem einzustellenden Winkel [mm] \theta [/mm] sein muss.

Aus Bild 2:
[mm] \tan \theta = \bruch{F_C}{m * g} \right)[/mm]

[mm] \gdw [/mm]

[mm] \tan \theta * F = F_C[/mm]


[mm] F_C [/mm] ist:

[mm] F_C = 8,988*10^9 \bruch{Nm²}{C²}* \bruch{F_C * r^2}{r^2} [/mm]

Nach q umgestellt, erhält man:

[mm] q = \wurzel{ \bruch{F_C * r^2}{8,988*10^9}}[/mm]



Zum letzten Teil der Aufgabe 3 habe ich mir gedacht:


[mm] n = \bruch{N}{N_A}[/mm] und [mm]n = \bruch{m}{M}[/mm]


Wobei

[mm] M = o * \left(M_C + 2*M_H \right)[/mm]

Die Größe o gibt an wie viele Elementarzellen vorhanden sind.
Elementarzelle ist das Monomer

[mm] \left(CH_2 \right)_1[/mm]

[mm] \left(CH_2 \right)_2[/mm] Dimer

[mm] \left(CH_2 \right)_3[/mm] Trimer

[mm] \left(CH_2\right)_o[/mm]  Polymer


Nach N auflösen

[mm] \bruch{N}{N_A} = n = \bruch{m}{M}[/mm]

[mm] \bruch{N}{N_A} = \bruch{m}{M}[/mm]

[mm] N * M = N_A * m[/mm]

[mm] N = \bruch{N_A * m}{M}[/mm]

[mm] N = \bruch{6,022*10^{23} * 0,1}{o * \left(M_C + 2*M_H\right)}[/mm]

Jetzt habe ich die Anzahl der Moleküle, also

[mm] N * \left(CH_2\right)_o[/mm]

Es befinden sich in einem Polymer vom Typ

[mm] \left(CH_2\right)_o[/mm]

[mm] \bruch{6,022*10^{23} * 0,1}{o * \left(M_C + 2*M_H\right)} * o * 3[/mm] Atome

Die Größe o spielt also keine Rolle für die Berechnung der Anzahl der Atome.



Zur 4. Aufgabe habe ich mir gedacht:

Das "Ladungsquadrat" :

[Dateianhang nicht öffentlich]
Bild 3



Alle Ladungen sind positiv und haben denselben Abstand zueinander, mit Ausnahme von [mm] q_1 [/mm] zu [mm] q_3 [/mm] und [mm] q_4 [/mm] zu [mm] q_2! [/mm]

Das Coulombgesetz lautet:

[mm] F_C = 8,988*10^9 \bruch{q_i * q_j}{r^2}[/mm]

Bedingung:

[mm] q_1 \equiv q_2 \equiv q_3 \equiv q_4[/mm]

Die Abstände sind:

[mm] r_14 \equiv r_23 \equiv r_34 [/mm]


Es gilt:


[mm]\left| \vec F_{12} \right| \equiv \left| \vec F_{13} \right| \equiv \left| \vec F_{14} \right|[/mm]


Die resultierende Kraft für die Addition von Vektor [mm] F_1_2 [/mm] und [mm] F_1_4: [/mm]



[mm]\wurzel{\left| \vec F_{12} \right|^2 + \left| \vec F_{14} \right|^2 }[/mm]


Für [mm] F_g_e_s [/mm] erhält man

[Dateianhang nicht öffentlich]

Bild 4




[mm]F_{ges} = \wurzel{\left| \vec F_{12} \right|^2 + \left| \vec F_{14} \right|^2 } + \left| \vec F_{13} \right|[/mm]

4b

[Dateianhang nicht öffentlich]
Bild 5

Wenn ich in Teil 4b das richtig interpretiert habe ändert sich für den Betrag des Vektors [mm] F_{13} [/mm] nur das Vorzeichen, oder?

[Dateianhang nicht öffentlich]

Bild 6
[mm]F_{ges} = \wurzel{\left| \vec F_{12} \right|^2 + \left| \vec F_{14} \right|^2 } - \left| \vec F_{13} \right|[/mm]



Ich hoffe ihr könnt mir Tipps und Hilfe geben

Danke schon im Voraus!


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 3 (Typ: gif) [nicht öffentlich]
Anhang Nr. 4 (Typ: gif) [nicht öffentlich]
Anhang Nr. 5 (Typ: gif) [nicht öffentlich]
Anhang Nr. 6 (Typ: gif) [nicht öffentlich]
        
Bezug
Elektrostatik: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Mi 25.04.2007
Autor: Kroni

Hi,

zu deiner Fadenaufgabe:

Hier musst du noch ein wenig mehr die Kärfte zerlegen:

[Dateianhang nicht öffentlich]

Ich habs jetzt nur ein wenig vereinfacht dargestellt:

Rechts siehst du dann die blauen und die roten Linien:

Die blaue Linie, die senkrecht nach unten zeigt, ist die Gewichtskraft Fg=m*g

Bei einem Fadenpendel gibt es dann die rücktreibende Kraft, die tangential zum Kreis, auf dem sich das Fadenpendel bewegt, wirkt (das ist die schräge blaue Linie).
Diese Kraft sorgt dafür, dass das Massestück wieder in seine Ausgangslage zurückmöchte.

Nun gut, da sich die Kugeln nicht zurückbewegen, muss es also eine Kraft geben, die die rücktreibende Kraft aufhebt:

Die Coulombkraft.

Diese zeigt ja zunächst in der Richtung der Verbindungslinie der beiden Kugeln (also im Bild die waagerechte rote Linie).
Nun wirkt aber nicht die volle Coulombkraft der rücktreibenden Kraft entgegen, sondern nur der Teil der Coulombkraft, der auch direkt der Rücktreibenden Kraft entgegengesetzt ist (die schräge rote Linie).

Wenn dann der Teil der Gewichtskraft mit dem Teil der Coulombkraft übereinstimmt, hast du den statischen Zustand.

Um die Teilkräfte richtig zu bestimmen, empfehle ich dir, dir oben mal ne senkrechte zwischen den Kugeln zu zeichnen, und dir dann einen Winkel einzuzeichnen, wie ich es auch gemacht habe.
Dann ist das eg. kein Problem mehr, Fg und Fc richtig aufzuteilen.


Dann ne Formel aufstellen, nach q umstellen, und du bist zu  Hause.

Zum Ladungsquadrat:

Sicher ist F13 nicht genauso groß wie F12 und F14!
F13 ist doch die Kraft, die zwischen den beiden Diagonalladungen wirkt!
Der Abstand ist doch wohl größer, als der zwischen 12 und 14! (nämlich genau [mm] \wurzel{2} [/mm] mal größer)

Bitte beachte das nochmal.

Und wenn du dann die nächste Aufgabe machst, wo einmal die Diagonale voller Plus und einmal voller Minus ist:

Da musste dann nur noch gucken, in welche Richtungen die Vektoren zeigen, und diese dann richtig addieren.


LG


Kroni

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                
Bezug
Elektrostatik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 Mi 25.04.2007
Autor: murmel

Hallo, ja! Ich habe mich verschrieben.

Also, die Beträge von [mm] F_1_2 [/mm] und [mm] F_1_4 [/mm] sind dieselben.

Der Betrag von [mm] F_1_3 [/mm] kann nicht gleich den beiden genannten Kräften sein, irgendwie einleuchtend.


Also ist [mm] F_1_3: [/mm]


[mm]F_{13} = \wurzel{\left| \vec F_{14} \right|^2 + \left| \vec F_{12} \right|^2 }[/mm]

Oder

[mm]\wurzel{2} * \left| \vec F_{14} \right| [/mm]


Für [mm] r_{13}: [/mm]

[mm]r_{13} = \wurzel{2} * \left| \vec F_{14} \right| [/mm]


Dann müsste das Ergebnis für [mm] F_{ges} [/mm] lauten:

[mm] F_{ges} = \wurzel{2} * \left| \vec F_{14} \right| + \left| \vec F_{13} \right|[/mm]

[mm] F_{ges} = \wurzel{2} * \left| \vec F_{14} \right| + 8,988*10^9 \bruch{q^2}{r_{13}^2}[/mm]

[mm] F_{ges} = \wurzel{2} * \left| \vec F_{14} \right| + 8,988*10^9 \bruch{q^2}{\left(\wurzel{\left(r_{14}^2 + r_{14}^2\right)} \right)^2}[/mm]

[mm] F_{ges} = \wurzel{2} * \left| \vec F_{14} \right| + 8,988*10^9 \bruch{q^2}{\left(\wurzel{\left(2 * r_{14}^2\right)} \right)^2}[/mm]

[mm] F_{ges} = \wurzel{2} * \left| \vec F_{14} \right| + 8,988*10^9 \bruch{q^2}{\left(2 * r_{14}^2\right)}[/mm]

[mm] F_{ges} = \wurzel{2} * \left| \vec F_{14} \right| + \underbrace{\bruch{1}{2} * \left| \vec F_{14} \right|}_{F_{13}}[/mm] ?


Und für diagonal andere Ladungen


-  +

+  -


[mm] F_{ges} = \wurzel{2} * \left| \vec F_{14} \right| - \underbrace{\bruch{1}{2} *\left| \vec F_{14} \right|}_{F_{13}}[/mm] ?


Bezug
                        
Bezug
Elektrostatik: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Mi 25.04.2007
Autor: leduart

Hallo Murmel
Ein kleiner Denkfehler, der Abstand ist [mm] \wurzel{2} [/mm] mal so gross für [mm] F_{13} [/mm] da es aber mit dem Quadrat geht ist [mm] F_{13}=1/2*F_{14} [/mm] .
er Rest ist richtig.
Gruss leduart

Bezug
                                
Bezug
Elektrostatik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:52 Mi 25.04.2007
Autor: Kroni

HI
kann mir mal jemand sagen, warum wir uns dann IMMER die Kärfte zerlegt haben, und dann gesagt haben, dass nur ein Teil der Gewichtskraft die rücktreibende Kraft gibt, und dann nur ein Teil der Coulombkraft den Teil von Fg ausgleicht?

Naja, werde das morgen evtl. mal durchrechnen, ob sich da was wegkürzt, aber die Ansicht, dass man da mit den Teilkräften arbeitet, war immer der standard Ansatz, den wir in der Schule benutzt haben.

LG


Kroni

Bezug
                                        
Bezug
Elektrostatik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:32 Do 26.04.2007
Autor: Kroni

Hi,

habs grad nochmal nach "meiner" Methode gerechnet:

Es wirkt nur ein Teil von Fg rücktreibend:

[mm] Fr=Fg*sin\alpha [/mm]

Es wirkt nur ein Teil der Coulombkraft in die entegengesetzte Richtung:

[mm] Fr'=Fc*cos\alpha [/mm]

=> Gleichgewichtsfall:

Fr=Fr'

[mm] Fg*sin\alpha=Fc*cos\alpha [/mm]

[mm] Fc=Fg*tan\alpha [/mm]

Und das ist genau die Beziehung, die hier im ersten Post gegeben worden ist.

Also: Die Lösung von murmel ist korrekt!

@leduart:

Was genau meinst du mit der "Seilkraft", die dann den anderen beiden Kärften das Gleichgewicht hält?

Weil diese Überlegung hatten wir bisher noch nicht, für mich war immer die Kräftezerlegungsmethode die "standard"methode.

Lieben Gruß,

Kroni

Bezug
                
Bezug
Elektrostatik: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 21:35 Mi 25.04.2007
Autor: leduart

Hallo murmel und Kroni
zur 1. Aufgabe, da hatte Murmel recht, es wirken Coulombkraft waagerechr, Gewichtskraft senkrecht, im Gleichgewichtsfall hält die "Seilkraft" den beiden das Gleichgewicht. d.h. murmels Zeichnung ist richtig.
Da sich ja nix bewegt, muss ich auch die Tangentialkraft gar nicht erst ansehen. Nur wenn man die Bewegung vom Moment des Aufladens an beschreiben wollte bräuchte man die!
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]