matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLogikEinstieg Prädikatenlogik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Logik" - Einstieg Prädikatenlogik
Einstieg Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einstieg Prädikatenlogik: Beweisen von Prädikat.Formeln
Status: (Frage) beantwortet Status 
Datum: 23:47 Mo 23.04.2007
Autor: sommeralex

Aufgabe
F1 = AxEy(P(x)v)P(y))
F2 = Ax (P(x) v P(f(x)))
F3 = Ax(P(x) v P (g(x)))

Welcher dieser Formeln sind

a) äquivalent
b) erfüllbarkeitsäquivalent

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Logiker!

Was ich weiß: äquivalent bedeutet, unter jeder passenden Struktur der selbe Wahrheitswert, erfüllbarkeitesäquivalent; wenn A gültig ist (unter einer passenden Struktur) dann auch B (unabhängig davon, ob für B weitere passenden Strukturen existieren)

Witzigerweise fehlt mir hier jedoch einfach der praktische Einstieg. Mir ist nicht klar, wie ich so eine Aufgabe lösen kann. Ich erwarte auch nicht die "Lösung" - sehr hilfreich wären einfach Ansätze, wie man sowas prinzipiell angeht. Wer immer mir hilft, ich bin dir sehr, sehr verbunden.

Liebe Grüße,
Alex

        
Bezug
Einstieg Prädikatenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 03:18 Di 24.04.2007
Autor: komduck

Zunächst sollten wir uns klar machen das:
F1 <=> Ey(P(y))
Auserdem gilt:
F2 => Ey(P(y))
F3 => Ey(P(y))
F1 erf => F2 erf
F2 erf => F3 erf

mfg komduck

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]