matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenEinhüllende d. Kurvenschar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Einhüllende d. Kurvenschar
Einhüllende d. Kurvenschar < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einhüllende d. Kurvenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 Di 04.03.2014
Autor: Thomas_Aut

Aufgabe
Bestimme die Einhüllende der Kurvenschar:
[mm] $2(x-a)^2 +2y^2 [/mm] = [mm] a^2$ [/mm]

Hallo,

Wärt ihr so nett mal drüberzuschauen:

$F(x,y,a) = [mm] 2(x-a)^2 +2y^2 [/mm] - [mm] 2a^2 [/mm] = 0$ ist stetig diffbar.

[mm] $\frac{\partial F}{\partial a} [/mm] = -4x +2a = 0 [mm] \gdw [/mm] a=2x$

somit also: $F(x,y,2x) = [mm] 2x^2+2y^2-4x^2 [/mm] = [mm] 2y^2 [/mm] - [mm] 2x^2 [/mm] = 0 [mm] \gdw [/mm] |y| = x$

Damit erhalten wir die implizite Darstellung der Kurve auf der die Punkte der Einhüllenden liegen.

Sehen wir uns die singulären Punkte an.

[mm] $\frac{\partial F}{\partial x} [/mm] = 4x-4a = 0 $ , also $ x = a$
[mm] $\frac{\partial F}{\partial y} [/mm] = 4y = 0 $ , also $ y = 0$
Somit sind die singulären Punkte : $(x,y) = (a,0)$ ,diese liegen allerdings nur für a=0 auf der Scharkurve , da $F(a,0,a) = [mm] -a^2 [/mm] = 0$.

Die singulären Punkte könnten auch Punkte der Einhüllenden sein, aber:

$ [mm] \frac{\partial^2 F}{\partial x^2}(a,b) \frac{\partial^2 F}{\partial y^2}(a,b) [/mm] - [mm] \frac{\partial^2 F}{\partial x \partial y}(a,b) [/mm] = 16 > 0$ , also ist (a,b) isolierter Punkt.


Beste Grüße und Dank

Thomas



        
Bezug
Einhüllende d. Kurvenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Di 04.03.2014
Autor: MathePower

Hallo Thomas_Aut,

> Bestimme die Einhüllende der Kurvenschar:
>  [mm]2(x-a)^2 +2y^2 = a^2[/mm]
>  Hallo,
>  
> Wärt ihr so nett mal drüberzuschauen:
>  
> [mm]F(x,y,a) = 2(x-a)^2 +2y^2 - 2a^2 = 0[/mm] ist stetig diffbar.
>  
> [mm]\frac{\partial F}{\partial a} = -4x +2a = 0 \gdw a=2x[/mm]
>
> somit also: [mm]F(x,y,2x) = 2x^2+2y^2-4x^2 = 2y^2 - 2x^2 = 0 \gdw |y| = x[/mm]
>  
> Damit erhalten wir die implizite Darstellung der Kurve auf
> der die Punkte der Einhüllenden liegen.
>  
> Sehen wir uns die singulären Punkte an.
>  
> [mm]\frac{\partial F}{\partial x} = 4x-4a = 0[/mm] , also [mm]x = a[/mm]
>  
> [mm]\frac{\partial F}{\partial y} = 4y = 0[/mm] , also [mm]y = 0[/mm]
>  Somit
> sind die singulären Punkte : [mm](x,y) = (a,0)[/mm] ,diese liegen
> allerdings nur für a=0 auf der Scharkurve , da [mm]F(a,0,a) = -a^2 = 0[/mm].
>  
> Die singulären Punkte könnten auch Punkte der
> Einhüllenden sein, aber:
>  
> [mm]\frac{\partial^2 F}{\partial x^2}(a,b) \frac{\partial^2 F}{\partial y^2}(a,b) - \frac{\partial^2 F}{\partial x \partial y}(a,b) = 16 > 0[/mm]
> , also ist (a,b) isolierter Punkt.
>  


Alles richtig. [ok]


>
> Beste Grüße und Dank
>  
> Thomas
>  

Gruss
MathePower

Bezug
                
Bezug
Einhüllende d. Kurvenschar: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:51 Di 04.03.2014
Autor: Thomas_Aut

Hallo Mathepower,

> Hallo Thomas_Aut,
>  
> > Bestimme die Einhüllende der Kurvenschar:
>  >  [mm]2(x-a)^2 +2y^2 = a^2[/mm]
>  >  Hallo,
>  >  
> > Wärt ihr so nett mal drüberzuschauen:
>  >  
> > [mm]F(x,y,a) = 2(x-a)^2 +2y^2 - 2a^2 = 0[/mm] ist stetig diffbar.
>  >  
> > [mm]\frac{\partial F}{\partial a} = -4x +2a = 0 \gdw a=2x[/mm]
> >
> > somit also: [mm]F(x,y,2x) = 2x^2+2y^2-4x^2 = 2y^2 - 2x^2 = 0 \gdw |y| = x[/mm]
>  
> >  

> > Damit erhalten wir die implizite Darstellung der Kurve auf
> > der die Punkte der Einhüllenden liegen.
>  >  
> > Sehen wir uns die singulären Punkte an.
>  >  
> > [mm]\frac{\partial F}{\partial x} = 4x-4a = 0[/mm] , also [mm]x = a[/mm]
>  >

>  
> > [mm]\frac{\partial F}{\partial y} = 4y = 0[/mm] , also [mm]y = 0[/mm]
>  >  
> Somit
> > sind die singulären Punkte : [mm](x,y) = (a,0)[/mm] ,diese liegen
> > allerdings nur für a=0 auf der Scharkurve , da [mm]F(a,0,a) = -a^2 = 0[/mm].
>  
> >  

> > Die singulären Punkte könnten auch Punkte der
> > Einhüllenden sein, aber:
>  >  
> > [mm]\frac{\partial^2 F}{\partial x^2}(a,b) \frac{\partial^2 F}{\partial y^2}(a,b) - \frac{\partial^2 F}{\partial x \partial y}(a,b) = 16 > 0[/mm]
> > , also ist (a,b) isolierter Punkt.
>  >  
>
>
> Alles richtig. [ok]

Für $a=0$ müsste der Punkt aber sehrwohl auf der Einhüllenden liegen oder? da ja die Gleichung $|y|=x$ für $(x,y) = (a,0)$ mit $a = 0$ erfüllt ist...

Lg

>  
>
> >
> > Beste Grüße und Dank
>  >  
> > Thomas
>  >  
>
> Gruss
>  MathePower


Bezug
                        
Bezug
Einhüllende d. Kurvenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 Di 04.03.2014
Autor: MathePower

Hallo Thomas_Aut,

> Hallo Mathepower,
>  
> > Hallo Thomas_Aut,
>  >  
> > > Bestimme die Einhüllende der Kurvenschar:
>  >  >  [mm]2(x-a)^2 +2y^2 = a^2[/mm]
>  >  >  Hallo,
>  >  >  
> > > Wärt ihr so nett mal drüberzuschauen:
>  >  >  
> > > [mm]F(x,y,a) = 2(x-a)^2 +2y^2 - 2a^2 = 0[/mm] ist stetig diffbar.
>  >  >  
> > > [mm]\frac{\partial F}{\partial a} = -4x +2a = 0 \gdw a=2x[/mm]
> > >
> > > somit also: [mm]F(x,y,2x) = 2x^2+2y^2-4x^2 = 2y^2 - 2x^2 = 0 \gdw |y| = x[/mm]
>  
> >  

> > >  

> > > Damit erhalten wir die implizite Darstellung der Kurve auf
> > > der die Punkte der Einhüllenden liegen.
>  >  >  
> > > Sehen wir uns die singulären Punkte an.
>  >  >  
> > > [mm]\frac{\partial F}{\partial x} = 4x-4a = 0[/mm] , also [mm]x = a[/mm]
>  
> >  >

> >  

> > > [mm]\frac{\partial F}{\partial y} = 4y = 0[/mm] , also [mm]y = 0[/mm]
>  >  
> >  

> > Somit
> > > sind die singulären Punkte : [mm](x,y) = (a,0)[/mm] ,diese liegen
> > > allerdings nur für a=0 auf der Scharkurve , da [mm]F(a,0,a) = -a^2 = 0[/mm].
>  
> >  

> > >  

> > > Die singulären Punkte könnten auch Punkte der
> > > Einhüllenden sein, aber:
>  >  >  
> > > [mm]\frac{\partial^2 F}{\partial x^2}(a,b) \frac{\partial^2 F}{\partial y^2}(a,b) - \frac{\partial^2 F}{\partial x \partial y}(a,b) = 16 > 0[/mm]
> > > , also ist (a,b) isolierter Punkt.
>  >  >  
> >
> >
> > Alles richtig. [ok]
>  
> Für [mm]a=0[/mm] müsste der Punkt aber sehrwohl auf der
> Einhüllenden liegen oder? da ja die Gleichung [mm]|y|=x[/mm] für
> [mm](x,y) = (a,0)[/mm] mit [mm]a = 0[/mm] erfüllt ist...
>  


Ja, da hast Du recht.

Für  a=0 erhältst Du, ausgehend von der
gegebenen Kurvenschar, nur einen einzigen Punkt.


> Lg
>  >  
> >
> > >
> > > Beste Grüße und Dank
>  >  >  
> > > Thomas
>  >  >  
> >
> > Gruss
>  >  MathePower
>  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]