matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesEinheitswürfel, Hyperkubus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Einheitswürfel, Hyperkubus
Einheitswürfel, Hyperkubus < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einheitswürfel, Hyperkubus: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:20 Fr 21.10.2011
Autor: Epsylon

Aufgabe 1
Überlege woran man erkennt, wann zwei Eckpunkte durch eine Kante verbunden sind

Aufgabe 2
Übertrage deine Erkenntnisse auf den vierdimensionalen Raum

Eine etwas seltsame aber sehr interessante Aufgabenstellung. Die Aufgabe soll durch Überlegungen über ein Einheitsquadrat bzw. Einheitswürfel bzw. Einheitshyperkubus mit Eckpunkten der Form [mm] (\*,\*), [/mm] bzw [mm] (\*,\*,\*) [/mm] bzw. [mm] (\*,\*,\*,\*) [/mm] gelöst werden.

Ein Einheitsquadrat hat die Eckpunkte (0,0),(0,1),(1,0),(1,1), Ein Einheitswürfel jene: (0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1), usw...

Mir ist also aufgefallen, dass man sagen kann, dass eine Kante sich nur zwischen solchen Punkten befindet, bei denen genau eine Koordinate nicht gleich der des anderen Punktes ist.
Also z.B. befindet sich eine Kante zwischen Punkt A und Punkt B, wenn xA=xB und yA=yB, aber [mm] zA\not=zB. [/mm]

Ich habe versucht das allgemein so auszudrücken: [mm] \overrightarrow{AB}=Wuerfelkante, [/mm] wenn gilt: [mm] \exists! a_{n} \in [/mm] A [mm] \wedge b_{n} \in [/mm] B, [mm] n\in \IN [/mm]  : [mm] a_{n}\not=b_{n} [/mm]

Weil es sich aber meines Erachtens nach bei Vektoren (Punkten) nicht wirklich um Mengen handelt glaube ich nicht daran, dass man das so schreiben kann. Es bietet sich allerdings so schön an, weil dadurch das "genau ein" und die Reihenfolge der Koordinaten berücksichtigt wird.

Es wäre schön, wenn mir jemand sagen könnte, wie man das mathematisch korrekt angibt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Einheitswürfel, Hyperkubus: Antwort
Status: (Antwort) fertig Status 
Datum: 23:43 Fr 21.10.2011
Autor: kamaleonti

Hallo Epsylon,

  [willkommenmr]!!

> Überlege woran man erkennt, wann zwei Eckpunkte durch eine
> Kante verbunden sind
>  Übertrage deine Erkenntnisse auf den vierdimensionalen
> Raum
>  Eine etwas seltsame aber sehr interessante
> Aufgabenstellung. Die Aufgabe soll durch Überlegungen
> über ein Einheitsquadrat bzw. Einheitswürfel bzw.
> Einheitshyperkubus mit Eckpunkten der Form [mm](\*,\*),[/mm] bzw
> [mm](\*,\*,\*)[/mm] bzw. [mm](\*,\*,\*,\*)[/mm] gelöst werden.
>  
> Ein Einheitsquadrat hat die Eckpunkte
> (0,0),(0,1),(1,0),(1,1), Ein Einheitswürfel jene:
> (0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1), usw...
>  
> Mir ist also aufgefallen, dass man sagen kann, dass eine
> Kante sich nur zwischen solchen Punkten befindet, bei denen
> genau eine Koordinate nicht gleich der des anderen Punktes
> ist. [ok]

> Also z.B. befindet sich eine Kante zwischen Punkt A und
> Punkt B, wenn xA=xB und yA=yB, aber [mm]zA\not=zB.[/mm]
>  
> Ich habe versucht das allgemein so auszudrücken:
> [mm]\overrightarrow{AB}=Wuerfelkante,[/mm] wenn gilt: [mm]\exists! a_{n} \in[/mm]
> A [mm]\wedge b_{n} \in[/mm] B, [mm]n\in \IN[/mm]  : [mm]a_{n}\not=b_{n}[/mm]

[mm] n\in\IN? [/mm] Wir haben hier endlich dimensionale Räume.

Ich würde es so machen: Seien [mm] A=(a_1,\ldots,a_n) [/mm] bzw [mm] B=(b_1,\ldots,b_n) [/mm] Ecken eines n-dimensionalen Hypereinheitswürfels. Es ist A benachbart zu B genau dann, wenn [mm] \sum_{i=1}^n|a_n-b_n|=1. [/mm]


LG

Bezug
        
Bezug
Einheitswürfel, Hyperkubus: Antwort
Status: (Antwort) fertig Status 
Datum: 00:09 Sa 22.10.2011
Autor: reverend

Hallo Epsylon,

noch kürzer als kamaleontis Variante ist die vektorielle. Sei [mm] \vec{a} [/mm] der Ortsvektor des Punktes A, [mm] \vec{b} [/mm] der von B.

Dann sind A und B durch eine Kante zu verbinden, wenn [mm] |\vec{a}-\vec{b}|=w [/mm] ist, wobei w die Kantenlänge des (Hyper-)würfels bezeichnet.

Das funktioniert dann sogar bei beliebiger Lage im (Hyper-)Raum und beliebiger Kantenlänge [mm] \not=0. [/mm]

Grüße
reverend


Bezug
                
Bezug
Einheitswürfel, Hyperkubus: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:07 Di 25.10.2011
Autor: Epsylon

Wow! Das bringt mich natürlich echt weiter! Vielen Dank euch beiden. Hätte nicht mit so tollen Tipps gerechnet!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]