Einheitskugel, Metrik < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Betrachte die Metrik [mm] d_1 [/mm] (x,y)= [mm] \sum_{j=1}^n |x_j [/mm] - [mm] y_j|
[/mm]
auf [mm] \IR^n. [/mm] Skizziere für den Fall n=2 die einheitskugel bezüglich [mm] d_1 [/mm] . |
Hallo
[mm] B_\epsilon [/mm] := [mm] \{ x \in M | d(x,y) < \epsilon \}
[/mm]
Kann ich hier die epsilonumgebung um 0 ansehen?
[mm] B_1 [/mm] (0) = [mm] \{ y \in \IR^2 | d_1 (y,0)< 1\} [/mm] = [mm] \{ y \in \IR^2 | |y_1| + |y_2| < 1 \}
[/mm]
-> Quadrat im R2, welches seine Eckpunkte in
den Punkten (1,0), (-1,0), (0,1) und (0,-1) besitzt
Kann ich das so schreiben?
|
|
|
|
> Betrachte die Metrik [mm]d_1[/mm] (x,y)= [mm]\sum_{j=1}^n |x_j[/mm] - [mm]y_j|[/mm]
> auf [mm]\IR^n.[/mm] Skizziere für den Fall n=2 die einheitskugel
> bezüglich [mm]d_1[/mm] .
> Hallo
> [mm]B_\epsilon[/mm] := [mm]\{ x \in M | d(x,y) < \epsilon \}[/mm]
>
> Kann ich hier die epsilonumgebung um 0 ansehen?
> [mm]B_1[/mm] (0) = [mm]\{ y \in \IR^2 | d_1 (y,0)< 1\}[/mm] = [mm]\{ y \in \IR^2 | |y_1| + |y_2| < 1 \}[/mm]
>
> -> Quadrat im R2, welches seine Eckpunkte in
> den Punkten (1,0), (-1,0), (0,1) und (0,-1) besitzt
> Kann ich das so schreiben?
Du sollst es ja in erster Linie zeichnen !
Wenn du von einer Distanz $\ [mm] d_1(x,y) [/mm] $ sprichst,
würde ich dann entweder $\ [mm] d_1(0,y) [/mm] $ oder $\ [mm] d_1(x,0) [/mm] $
betrachten, nicht $\ [mm] d_1(y,0) [/mm] $ (um die Leser nicht zu
verwirren - trotz der Symmetrie der Abstandsfunktion) ...
Im Übrigen sind deine Überlegungen korrekt.
LG Al-Chw.
|
|
|
|
|
Aufgabe | [mm] d_1 [/mm] (x,y)= [mm] \sum_{j=1}^n [/mm] | [mm] x_j [/mm] - [mm] y_j| [/mm] , [mm] d_2 [/mm] (x,y) = [mm] \sqrt{\sum_{j=1}^n (x_j - y_j)^2 } [/mm] und [mm] d_{\infty} [/mm] (x,y) = [mm] max_{j=1,..,n} |x_j [/mm] - [mm] y_j| [/mm] auf [mm] \IR^n
[/mm]
Begründe warum Konvergenz einer Folge gegen einen Punkt x [mm] \in \IR^n [/mm] bzgl. einer der drei Metriken, genau dann stattfinden, wenn dies auch bzgl jeder der beiden anderen metriken zutrifft
(Bem: aus Analysis ist bekannt: Jede dieser drei Metriken stammt von eine Norum und auf [mm] \IR^n [/mm] sin alle Normen äquivalent) |
Danke, die zweite Frage hab ich oben gepostet.
Die Bemerkung ist mir klar.
Seien zwei Normen ||.||, [mm] ||.||_t [/mm] äquivalent d.h. [mm] \exists C_1 [/mm] , [mm] C_2 [/mm] >0 : [mm] \forall [/mm] x [mm] \in \IR^n [/mm] : [mm] C_1 [/mm] ||x|| <= [mm] ||x||_t [/mm] <= [mm] C_2 [/mm] ||x||
[mm] \forall [/mm] x,y [mm] \in \IR^n [/mm] : d (x,y) = [mm] ||x-y||_s \le \frac{1}{C_1} ||x-y||_t [/mm] = [mm] 1/C_1 d_t [/mm] (x,y) [mm] \le \frac{C_2}{C_1} ||x-y||_s [/mm] = [mm] \frac{C_2}{C_1} [/mm] d (x,y)
SO hab ich gezeigt dass die Metriken dann ebenfalls äquivalent sind,
Aber wie zeig ich nun dass die Konvergenz gleich ist?
[mm] x_n [/mm] -> X falls
[mm] \forall \epsilon>0 \existsN \in \IN \forall [/mm] n [mm] \ge [/mm] N : [mm] d(x_n [/mm] ,x) < [mm] \epsilon
[/mm]
|
|
|
|
|
Hallo,
> [mm]d_1[/mm] (x,y)= [mm]\sum_{j=1}^n[/mm] | [mm]x_j[/mm] - [mm]y_j|[/mm] , [mm]d_2[/mm] (x,y) =
> [mm]\sqrt{\sum_{j=1}^n (x_j - y_j)^2 }[/mm] und [mm]d_{\infty}[/mm] (x,y) =
> [mm]max_{j=1,..,n} |x_j[/mm] - [mm]y_j|[/mm] auf [mm]\IR^n[/mm]
> Begründe warum Konvergenz einer Folge gegen einen Punkt x
> [mm]\in \IR^n[/mm] bzgl. einer der drei Metriken, genau dann
> stattfinden, wenn dies auch bzgl jeder der beiden anderen
> metriken zutrifft
> (Bem: aus Analysis ist bekannt: Jede dieser drei Metriken
> stammt von eine Norum und auf [mm]\IR^n[/mm] sin alle Normen
> äquivalent)
> Seien zwei Normen ||.||, [mm]||.||_t[/mm] äquivalent d.h. [mm]\exists C_1[/mm]
> , [mm]C_2[/mm] >0 : [mm]\forall[/mm] x [mm]\in \IR^n[/mm] : [mm]C_1[/mm] ||x|| <= [mm]||x||_t[/mm] <=
> [mm]C_2[/mm] ||x||
> [mm]\forall[/mm] x,y [mm]\in \IR^n[/mm] : d (x,y) = [mm]||x-y||_s \le \frac{1}{C_1} ||x-y||_t[/mm]
> = [mm]1/C_1 d_t[/mm] (x,y) [mm]\le \frac{C_2}{C_1} ||x-y||_s[/mm] =
> [mm]\frac{C_2}{C_1}[/mm] d (x,y)
> SO hab ich gezeigt dass die Metriken dann ebenfalls
> äquivalent sind,
Ja.
> Aber wie zeig ich nun dass die Konvergenz gleich ist?
>
> [mm]x_n[/mm] -> X falls
> [mm]\forall \epsilon>0 \existsN \in \IN \forall[/mm] n [mm]\ge[/mm] N :
> [mm]d(x_n[/mm] ,x) < [mm]\epsilon[/mm]
Du könntest auch als Def. schreiben: [mm] $x_n \to [/mm] x$ falls [mm] $d(x_n,x) \to [/mm] 0$.
Wenn [mm] $x_n\to [/mm] x$ bzgl. $d$, dann gilt also [mm] $d(x_n,x) \to [/mm] 0$.
Dann ist auch [mm] $d_t(x_n,x) \le C_2 d(x_n,x) \to [/mm] 0$, also [mm] $x_n \to [/mm] x$ bzgl. [mm] $d_t$.
[/mm]
Viele Grüße,
Stefan
|
|
|
|