matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeEindimensionales Potential
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - Eindimensionales Potential
Eindimensionales Potential < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eindimensionales Potential: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:15 Mo 21.05.2012
Autor: Basser92

Aufgabe
Ein Massepunkt der Mass m bewegt sich in dem eindimensionalen Potential [mm] V(x)=x^{4}-2x^{2}. [/mm] Gehen Sie im Folgenden davon aus, dass Sie Einheiten so gewählt haben, dass m=1 und x dimensionslos ist.
a) Skizzieren Sie das Potential. Welche Werte der Energie E sind möglich? Welchen Unterschied der Bewegungsform gibt es für E < 0 und E > 0? Skizzieren Sie qualitativ die zu diesen beiden Fällen gehörigen Bahnen im Phasenraum (x,v). Was ist der Maximale Wert für x' bei gegebener Energie E?
b) Bestimmen Sie die stabilen und instabilen Ruhelagen der Bewegung und die zugehörigen Energien. Geben Sie die Taylor-Entwicklung des Potentials um die stabilen Ruhelagen bis zur 2. Ordnung einschließlich an. Wie sieht die Bewegungsgleichung für kleine Bewegungen in der Nähe der Ruhelage aus und was ist die Schwingungsfrequenz?

Das skizzieren, Ruhelagen bestimmen und die Taylor-Entwicklung sind kein Problem. Probleme bereitet mir aber der maximale Wert für x' und die Schwingungsfrequenz. Wie kommt man auf soetwas? In der Vorlesung haben wir mit [mm] V(x)=x^{2} [/mm] und [mm] E=\bruch{1}{2}mv^{2}+\bruch{1}{2}kx^{2} [/mm] die Schwingungsgleichung hergeleitet, aber ich habe hier ja explizit keine Formel für die Energie angegeben. Kann ich einfach die aus der Vorlesung nutzen?
Und wie ist das mit der Bewegung bei E < 0 bzw E > 0 gemeint? Das Potential sieht ja aus wie ein w, aber die Energien > 0 sind nicht direkt verbunden. Muss ich da irgendwie eine Fallunterscheidung machen oder ist das vernachlässigbar, da das Potential ja Symmetrisch ist?

        
Bezug
Eindimensionales Potential: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mi 23.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]