Eigenwerte usw. < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hallo,
ich möchte mich nur mal eben rückversichern, ob ich den Zusammenhang zwischen Eigenwerten, Eigenvektoren, Eigenräumen und Diagonalisierbarkeit verstanden habe. Also hier meine Annahmen:
1.) Zu jedem Eigenwert bekomme ich einen Eigenvektor.
2.) Dieser Eigenvektor erzeugt einen Eigenraum.
3.) Die Dimension eines Eigenraums ist immer 1 (weil ich pro Eigenraum ja immer nur einen Vektor habe).
4.) Die Diagonalisierbarkeit hängt damit von der Anzahl der Eigenwerte ab:
stimmt die Anzahl der Eigenvektoren mit dim V überein, ist die Matrix diagonalisierbar, ansonsten nicht.
Wäre nett, wenn mir jemand diese Vermutungen kurz bestätigen könnte, bzw. wenn was falsch ist daran, erklären warum und evtl. ein Gegenbeispiel geben.
Danke schonmal, Kati
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:13 Fr 04.02.2005 | Autor: | Julius |
Hallo Kati!
> ich möchte mich nur mal eben rückversichern, ob ich den
> Zusammenhang zwischen Eigenwerten, Eigenvektoren,
> Eigenräumen und Diagonalisierbarkeit verstanden habe. Also
> hier meine Annahmen:
> 1.) Zu jedem Eigenwert bekomme ich einen Eigenvektor.
, aber im Sinne von mindestens einen (sogar unendlich viele im reellen Fall), und auch eventuell mehrere, die linear unabhängig sind!
> 2.) Dieser Eigenvektor erzeugt einen Eigenraum.
Nein, nicht unbedingt! Eigenräume können auch mehrdimensional sein! Man nennt die Dimension eines Eigenraumes zu einem bestimmten Eigenwert dessen geometrische Vielfachheit.
Gegenbeispiel: Die Einheitsmatrix im [mm] $\IR^n$ [/mm] hat nur den Eigenwert $1$. Der zugehörige Eigenraum ist $n$-dimensional.
> 3.) Die Dimension eines Eigenraums ist immer 1 (weil ich
> pro Eigenraum ja immer nur einen Vektor habe).
, siehe oben
> 4.) Die Diagonalisierbarkeit hängt damit von der Anzahl
> der Eigenwerte ab:
> stimmt die Anzahl der Eigenvektoren mit dim V überein, ist
> die Matrix diagonalisierbar, ansonsten nicht.
Die Diagonalisierbarkeit hängt davon ab, ob die Dimensionen der Eigenräume, also die geometrischen Vielfachheiten, "hinreichend groß" ist. Man bezeichnet als algebraische Vielfachheit eines Eigenwertes die Vielfachheit, mit der dieser Eigenwert Nullstelle des charakteristischen Polynoms ist. Genau dann, wenn die geometrischen Vielfachheiten aller Eigenwerte so groß sind wie deren algebraische Vielfachheiten, ist die Matrix diagonalisierbar.
Zerfällt das charakteristische Polynom vollständig in Linearfaktoren und hat es nur einfache Nullstellen (d.h. sind alle Eigenwerte paarweise verschieden), dann sind alle Eigenräume automatisch eindimensional, d.h. es gilt "algebraische Vielfachheit=1=geometrische Vielfachheit", und die Matrix ist automatisch diagonalisierbar.
In allen anderen Fällen muss man bei diesem Vorgehen die Dimensionen der Eigenräume ausrechnen, also die geometrischen Vielfachheiten, und schauen, ob diese mit den algebraischen Vielfachheiten übereinstimmen. Ist das der Fall, dann ist der unterliegende Vektorraum die direkte Summe der Eigenräume. Es gibt also eine Basis aus Eigenvektoren. Es gibt also eine Basis, bezüglich derer die Darstellungsmatrix Diagonalgestalt hat. Die Matrix ist diagonalisierbar.
Liebe Grüße
Julius
|
|
|
|