matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwerte / Dim. Eigenra
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte / Dim. Eigenra
Eigenwerte / Dim. Eigenra < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte / Dim. Eigenra: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:35 Mi 28.03.2007
Autor: Willkommen

Hallo,

ich habe einige Fragen zu Eigenwerten.


a) Bekannterweise besitzen ähnliche Matrizen gleiche Eigenwerte. Ich liege doch richtig, dass daraus NICHT folgt, dass diese auch gleiche Eigenvektoren besitzen und damit ein gemeinsames unitäres U, mit welchem sie sich auf Diagonalform bringen lassen?!


b) Eigenvektoren zu meiner Matrix A berechne ich ja über das char. Polynom:

$ [mm] det(A-\lambda [/mm] I)=0 $

Für die Dimension des Eigenraumes (= geom. Vielfachheit = Anzahl Eigenvektoren zu 1 Eigenwert [mm] \lambda) [/mm] gilt weiter:

[mm] dim(E_{\lambda}) [/mm] = [mm] \{\vec{x}| \mbox{ (A-\lambda I)\vec{x}=0}\} [/mm]

Nun frage ich mich, wodurch die geometrische Vielfachheit bestimmt wird?

Denn: Das [mm] (A-\lambda I)\vec{x}=0 [/mm] stellt ja ein lineares Gleichungssystem (LGS) dar, mit [mm] B:=(A-\lambda [/mm] I). Die Lösungsvesktoren, die das homogene LGS [mm] B\vec{x}=0 [/mm] lösen, sind meine Eigenvektoren [mm] \vec{x}. [/mm] Die Dimension eines homogenen LGS ist gegeben durch #Spalten von B - Rang(B).

D.h. wodurch wird der Rang von B bestimmt, der ja ausschlaggebend dafür ist, ob 1 Eigenwert einen, zwei, oder wieviel auch immer Eigenvektoren besitzt? Wird also durch das Abziehen des berechneten Eigenwertes von der Diagonalen der Matrix A lineare abhängigkeiten geschaffen (nach welchem Prinzip?) ?


c) Hat ein EW die algebraische Vielfachheit 2, so ist doch nur bei hermiteschen Matrizen sicher, dass er auch die geom. Vielfachheit 2 hat?! Sprich: Algebraische = Geometrische Vielfachheit gilt nur bei hermiteschen Matrizen?!


OK, Teil b) ist etwas "wirr", vielleicht, weil ich mein Problem nicht genau in Worte fassen kann. :-O

Danke und Grüße.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenwerte / Dim. Eigenra: zu a. und c.
Status: (Antwort) fertig Status 
Datum: 09:08 Do 29.03.2007
Autor: angela.h.b.


> a) Bekannterweise besitzen ähnliche Matrizen gleiche
> Eigenwerte. Ich liege doch richtig, dass daraus NICHT
> folgt, dass diese auch gleiche Eigenvektoren besitzen

Hallo,

Ja.

Guck Dir [mm] \pmat{ 0 & 0 \\ 0 & 2 } [/mm] und  [mm] \pmat{ 0 & -2 \\ 0 & 2 } [/mm] an.

Die beiden sind ähnlich, Eigenwerte 0 und 1, die Eigenräume sind nicht gleich.


>
> c) Hat ein EW die algebraische Vielfachheit 2, so ist doch
> nur bei hermiteschen Matrizen sicher, dass er auch die
> geom. Vielfachheit 2 hat?! Sprich: Algebraische =
> Geometrische Vielfachheit gilt nur bei hermiteschen
> Matrizen?!


Es gilt: diagonalisierbar <==> geometrische und algebraische Vielfachheit sind gleich.

Es sind ja nicht nur hermitesche Matrizen diagonalisierbar.

Gruß v. Angela

Bezug
        
Bezug
Eigenwerte / Dim. Eigenra: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Sa 31.03.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]