matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwert Eingenvektor Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Eigenwerte" - Eigenwert Eingenvektor Matrix
Eigenwert Eingenvektor Matrix < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert Eingenvektor Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:35 Di 01.02.2011
Autor: DerKopfQualmt

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[http://www.matheplanet.com/default3.html?call=viewforum.php?forum=-2&ref=http%3A%2F%2Fwww.google.de%2Fsearch%3Fhl%3Dde%26client%3Dfirefox-a%26hs%3De4c%26rls%3Dorg.mozilla%253Ade%253Aofficial%26q%3Dmathe%2Bforu%252C%26aq%3Df%26aqi%3Dg10%26aql%3D%26oq%3D]

Hab ein großes Problem mit der Lösung der letzten beiden Aufgaben. Die ersten Aufgaben hab ich noch ohne große Probleme lösen können.

i) [-1, 0 , -1] und [-18, -12 , -6] (Eigenvektor mal Eigenwert)
ii) Diagonalmatrix mit den Einträgen -1 , 3, und -1 in der Diagonalen
iii) da hab ich ein LGS gelöst und bekomme dann raus  -2 x [1 , 0 , 1] + 1 x [3 , 2 , 1 ] + 1 x [0 , -2 , 1]

[Dateianhang nicht öffentlich]





Dateianhänge:
Anhang Nr. 1 (Typ: GIF) [nicht öffentlich]
        
Bezug
Eigenwert Eingenvektor Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 08:23 Mi 02.02.2011
Autor: angela.h.b.


Hallo,

[willkommenmr].

Setze nächstes Mal doch bitte einen direkten Link zum Beitrag im anderen Forum, so daß man ohne Mühe sehen kann, ob noch Hilfe nötig ist.


> Hab ein großes Problem mit der Lösung der letzten beiden
> Aufgaben. Die ersten Aufgaben hab ich noch ohne große
> Probleme lösen können.
>  
> i) [-1, 0 , -1] und [-18, -12 , -6] (Eigenvektor mal
> Eigenwert)
>  ii) Diagonalmatrix mit den Einträgen -1 , 3, und -1 in
> der Diagonalen
>  iii) da hab ich ein LGS gelöst und bekomme dann raus  -2
> x [1 , 0 , 1] + 1 x [3 , 2 , 1 ] + 1 x [0 , -2 , 1]
>

>

Nun willst Du [mm] Ae_1 [/mm] wissen.

Du weißt

[mm] Ae_1= [/mm] A(-2* [1 , 0 , 1] + 1*[3 , 2 , 1 ] + 1 *[0 , -2 , 1] )

= -2A([1,0,1]) + ... +... ,

und was die Matrix mit den Eigenvektoren macht, weißt Du ja.



Auf diese Weise kannst Du auch [mm] Ae_2 [/mm] und [mm] Ae_3 [/mm] bestimmen, und wenn Du Dir klarmachst, daß in den Spalten von A die Bilder der Stadardbasisvektoren stehen, dann hast Du Deine Matrix.

Gruß v. Angela

>  
>
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]