matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwert 0
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - Eigenwert 0
Eigenwert 0 < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert 0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:37 Do 22.01.2009
Autor: nina1

Aufgabe
Gegeben sei die Matrix [mm] \pmat{ 1 & 1 \\ -1 & -1 } [/mm]

Berechnen Sie Eigenwerte und Eigenvektoren.

Hallo,

eine kurze Frage haette ich.

Es kommt ja der Eigenwert 0 raus.
Soweit verstehe ich es noch. Aber in meinen Loesungen steht jetzt das ein Eigenvektor [mm] \vektor{1 \\ -1} [/mm] ist.

Wie kommt man dadrauf?

Es ist doch (1-z)(-1-z) mit z = 0 => -1 und 1*(-1) = -1 => Eigenvektor [mm] \vektor{-1 \\ -1}? [/mm] Gruss

        
Bezug
Eigenwert 0: Antwort
Status: (Antwort) fertig Status 
Datum: 11:54 Do 22.01.2009
Autor: angela.h.b.


> Gegeben sei die Matrix [mm]\pmat{ 1 & 1 \\ -1 & -1 }[/mm]
>  
> Berechnen Sie Eigenwerte und Eigenvektoren.
>  Hallo,
>  
> eine kurze Frage haette ich.
>  
> Es kommt ja der Eigenwert 0 raus.
>  Soweit verstehe ich es noch. Aber in meinen Loesungen
> steht jetzt das ein Eigenvektor [mm]\vektor{1 \\ -1}[/mm] ist.
>  
> Wie kommt man dadrauf?

Hallo,

Du wenn Du Eigenvektoren eienr Matrix A zum Eigenwert  [mm] \lambda [/mm] suchst, mußt Du den Kern von [mm] A-\lambda [/mm] E berechnen.

Hier also den Kern von [mm] \pmat{ 1 & 1 \\ -1 & -1 }. [/mm]

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]