matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwert/-raum Polynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Eigenwerte" - Eigenwert/-raum Polynom
Eigenwert/-raum Polynom < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert/-raum Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 Di 20.04.2010
Autor: mathiko

Aufgabe
Betrachte den Vektorraum R[X] der reellen Polynome mit der linearen Abbildung R[X]-> R[X], D(f)(X)=f´(X). Bestimme die Eigenwerte und Eigenräume von D.

Hallo!

Ich habe Probleme bei obiger Aufgabe:
Mein bisheriger Ansatz war die darstellende Matrix zu berechnen:
Ich nehme die Basis  [mm] 1,X^2,X^3,...,X^n [/mm]
Dann ist [mm] D(X^n)=n*X^{n-1} [/mm]
D(1)=0
D(X)=1
etc.
Daraus habe ich die Matrix
[mm] A=M_B(D)=\pmat{ 0 & 1 & 0 & 0 & ...\\0 & 0 & 2 & 0 & ... \\0 & 0 & 0 & 3 &... \\ ... & ... & ... & ... & n} [/mm]
Aber dann kam ich nicht weiter.
Ich kenne es nur so, dass man dann über das charakteristische Polynom auf Eigenwerte und -räume kommt.

Hat jemand einen Tipp für mich wie ich weiterkomme? Sollte ich komplett anders anfangen?

Schon mal danke!!!
Gruß mathiko

        
Bezug
Eigenwert/-raum Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Di 20.04.2010
Autor: schachuzipus

Hallo mathiko,

> Betrachte den Vektorraum R[X] der reellen Polynome vom Grad [mm] \le [/mm] n mit der
> linearen Abbildung R[X]-> R[X], D(f)(X)=f´(X). Bestimme
> die Eigenwerte und Eigenräume von D.
>  Hallo!
>  
> Ich habe Probleme bei obiger Aufgabe:
>  Mein bisheriger Ansatz war die darstellende Matrix zu
> berechnen:
>  Ich nehme die Basis  [mm]1,X^2,X^3,...,X^n[/mm]
>  Dann ist [mm]D(X^n)=n*X^{n-1}[/mm]
>  D(1)=0
>  D(X)=1
>  etc. [ok]
>  Daraus habe ich die Matrix
>  [mm]A=M_B(D)=\pmat{ 0 & 1 & 0 & 0 & ...\\0 & 0 & 2 & 0 & ... \\0 & 0 & 0 & 3 &... \\ ... & ... & ... & ... & n}[/mm]

Nicht ganz, bedenke, dass du eine [mm] $(n+1)\times(n+1)$-Matrix [/mm] erhältst.

Es ist die Darstellungsmatrix bzgl. der obigen Standardbasis also

[mm] $A=\pmat{0&1&0&0&\ldots&0&0\\0&0&2&0&\ldots&0&0\\0&0&0&3&\ldots&0&0\\0&0&0&0&\ldots&0&0\\\vdots&\vdots&\vdots&\vdots&\ddots&n-1&0\\0&0&0&0&\ldots&0&n\\0&0&0&0&\ldots&0&0}$ [/mm]

Mithin [mm] $A-\lambda\cdot{}\mathbb{E}_{n+1}=\pmat{-\lambda&1&0&0&\ldots&0&0\\0&-\lambda&2&0&\ldots&0&0\\0&0&-\lambda&3&\ldots&0&0\\0&0&0&-\lambda&\ldots&0&0\\\vdots&\vdots&\vdots&\vdots&\ddots&n-1&0\\0&0&0&0&\ldots&-\lambda&n\\0&0&0&0&\ldots&0&-\lambda}$ [/mm]

Und das ist eine lupenreine Dreiecksmatrix, deren Determinante du doch ablesen kannst.

Was ergibt sich also für das charakt. Polynom und was für die Eigenwerte?

Alternativ kannst du über die Definition des Eigenwertes gehen:

[mm] $\lambda$ [/mm] heißt Eigenwert, wenn [mm] $\varphi(p)=p'=\lambda [/mm] p$ für ein Polynom [mm] $p\in [/mm] R[x], [mm] p\not\equiv [/mm] 0$

Was, wenn [mm] $\lambda\neq [/mm] 0$?

Dann [mm] $p'=\lambda [/mm] p$

Wenn nun [mm] $\operatorname{deg}(p)=n$, [/mm] was ist dann los?



> Aber dann kam ich nicht weiter.
>  Ich kenne es nur so, dass man dann über das
> charakteristische Polynom auf Eigenwerte und -räume
> kommt.
>  
> Hat jemand einen Tipp für mich wie ich weiterkomme? Sollte
> ich komplett anders anfangen?
>  
> Schon mal danke!!!
>  Gruß mathiko

LG

schachuzipus

Bezug
                
Bezug
Eigenwert/-raum Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 Di 20.04.2010
Autor: mathiko

Hallo schachuzipus,

also die Determinante ist [mm] -\lambda*-\lambda*...+ 1*2*3*4...*n=(-\lambda)^n+n! [/mm]  ,wenn ich das Sarrus richtig mache...

Aber aus einer Fakultät die Nullstelle zu bestimmen...? Oje!
  

> Alternativ kannst du über die Definition des Eigenwertes
> gehen:
>  
> [mm]\lambda[/mm] heißt Eigenwert, wenn [mm]\varphi(p)=p'=\lambda p[/mm] für
> ein Polynom [mm]p\in R[x], p\not\equiv 0[/mm]
>  
> Was, wenn [mm]\lambda\neq 0[/mm]?
>  
> Dann [mm]p'=\lambda p[/mm]
>  
> Wenn nun [mm]\operatorname{deg}(p)=n[/mm], was ist dann los?

Also, wenn [mm] \lambda\neq [/mm] 0, dann hat jedes Polynom sein eigenes [mm] \lambda. [/mm]

Nur leider fehlt mir gerade die definition von "deg". Was war das nochmal? (Sorry!!!!!)

mathiko

Bezug
                        
Bezug
Eigenwert/-raum Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Di 20.04.2010
Autor: schachuzipus

Hallo nochmal,

> Hallo schachuzipus,
>  
> also die Determinante ist [mm]-\lambda*-\lambda*...+ 1*2*3*4...*n=(-\lambda)^n+n![/mm]
>  ,wenn ich das Sarrus richtig mache...

Oh wei, das ist leider kompletter Unfug.

Sarrus geht nur für [mm] $3\times [/mm] 3$-Matrizen und zum anderen ist die Determinante einer [mm] \triangle-Matrix [/mm] das Produkt der Hauptdiagonalelemente, hier also [mm] $-\lambda^{n+1}$ [/mm]


>  
> Aber aus einer Fakultät die Nullstelle zu bestimmen...?
> Oje!
>    
> > Alternativ kannst du über die Definition des Eigenwertes
> > gehen:
>  >  
> > [mm]\lambda[/mm] heißt Eigenwert, wenn [mm]\varphi(p)=p'=\lambda p[/mm] für
> > ein Polynom [mm]p\in R[x], p\not\equiv 0[/mm]
>  >  
> > Was, wenn [mm]\lambda\neq 0[/mm]?
>  >  
> > Dann [mm]p'=\lambda p[/mm]
>  >  
> > Wenn nun [mm]\operatorname{deg}(p)=n[/mm], was ist dann los?
>  
> Also, wenn [mm]\lambda\neq[/mm] 0, dann hat jedes Polynom sein
> eigenes [mm]\lambda.[/mm]

Was soll das bedeuten?

>  
> Nur leider fehlt mir gerade die definition von "deg". Was
> war das nochmal? (Sorry!!!!!)

Das ist der Grad des Polynoms, also die höchste nicht verschwindende Potenz von x

Wenn p den Grad n hat, dann sicher auch [mm] $\lambda\cdot{}p$ [/mm]

Welchen Grad hat aber $p'$? Kann also [mm] $p'=\lambda [/mm] p$ gelten?

Nein, daher ist die Annahme [mm] $\lambda\neq [/mm] 0$ falsch, und es muss [mm] $\lambda=0$ [/mm] gelten.

Was du ebenso aus dem char. Polynom ablesen kannst.

>  
> mathiko

Gruß

schachuzipus

Bezug
                                
Bezug
Eigenwert/-raum Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:39 Di 20.04.2010
Autor: mathiko

hmm, okay, das habe ich soweit verstanden> Hallo nochmal,
> > Also, wenn [mm]\lambda\neq[/mm] 0, dann hat jedes Polynom sein
> > eigenes [mm]\lambda.[/mm]
>  
> Was soll das bedeuten?

Damit meinte ich, dass es kein einheitliches [mm] \lambda [/mm] geben würde, wie du ja auch unten bestätigst:

> daher ist die Annahme [mm]\lambda\neq 0[/mm] falsch, und >es
> muss [mm]\lambda=0[/mm] gelten.

Nun, wenn ich 0 für [mm] \lambda [/mm] in die Matrix einsetze bekomme ich wieder A. Na ja und daraus den Eigenraum zu bestimmen ist sogar für mich machbar ;)

Ein ganz großes Danke!!!!!!!!!!

Bezug
        
Bezug
Eigenwert/-raum Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Di 20.04.2010
Autor: Blech

Hi,

> Betrachte den Vektorraum R[X] der reellen Polynome mit der
> linearen Abbildung R[X]-> R[X], D(f)(X)=f´(X). Bestimme
> die Eigenwerte und Eigenräume von D.
>  Hallo!
>  
> Ich habe Probleme bei obiger Aufgabe:
>  Mein bisheriger Ansatz war die darstellende Matrix zu
> berechnen:
>  Ich nehme die Basis  [mm]1,X^2,X^3,...,X^n[/mm]

Sicher, daß Du das nur endlich-dimensional für Polynome n-ten Grades betrachten sollst? Der Vektorraum der reellen Polynome ist eigentlich unendlich-dimensional.

d.h. die Basis sollte sein: [mm] $1,X,X^2,X^3,\ldots$ [/mm]

Das Ergebnis wäre dann wesentlich sinnvoller und interessanter.

ciao
Stefan

Bezug
                
Bezug
Eigenwert/-raum Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:16 Di 20.04.2010
Autor: mathiko

Hi!

Stimmt, das ist wohl eher der Sinn der Aufgabe.

Dann ist die Determinante [mm] -\lambda^\infty, [/mm] oder?

Gruß mathiko

Bezug
                        
Bezug
Eigenwert/-raum Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 22:42 Di 20.04.2010
Autor: Blech

Hi,

> Stimmt, das ist wohl eher der Sinn der Aufgabe.
>  
> Dann ist die Determinante [mm]-\lambda^\infty,[/mm] oder?

ich glaub nicht, daß das funktioniert.

Aber vergiß die Determinante und betrachte das Gleichungssystem

[mm] $Av_\lambda =\lambda v_\lambda\ \Leftrightarrow$ [/mm]
[mm] $$(A-\lambda E)v_\lambda [/mm] =0$$
Da A so einfach gestrickt ist, kann man das zeilenweise lösen, indem man einfach den ersten Koeffizienten von [mm] $v_\lambda$ [/mm] auf 1 setzt (wieso geht das?) und dann schaut was für [mm] $\lambda=0,$ [/mm] bzw. [mm] $\lambda\neq [/mm] 0$ für den Rest von [mm] $v_\lambda$ [/mm] folgt.

Die [mm] $v_\lambda$ [/mm] sollten Dir bekannt vorkommen... =)

ciao
Stefan

Bezug
                                
Bezug
Eigenwert/-raum Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:59 Di 20.04.2010
Autor: mathiko

Also den ersten Koeffizienten =1 setzen geht, da [mm] v_1 [/mm] beliebig wählbar ist wegen der Nullspalte.

Für [mm] \lambda=0 [/mm] kommt dann [mm] v_2=1 [/mm] , [mm] v_3=2 [/mm] usw. raus, eben der Nebendiagonale entsprechend.

Für [mm] \lambda \neq [/mm] 0 ist dann [mm] v_1=\lambda [/mm] und [mm] v_2=-\lambda, v_3=-1/2\lambda [/mm] usw. gemäß [mm] v_j=1/(j-1)*\lambda. [/mm]

Ich hoffe ich habe [mm] v_\lambda [/mm] hier richtig interpretiert!

Gruß mathiko



Bezug
                                        
Bezug
Eigenwert/-raum Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 Di 20.04.2010
Autor: Blech

Hi,

>  Also den ersten Koeffizienten =1 setzen geht, da [mm]v_1[/mm]
> beliebig wählbar ist wegen der Nullspalte.

???
Das Argument will ich hören. =)

>  
> Für [mm]\lambda=0[/mm] kommt dann [mm]v_2=1[/mm] , [mm]v_3=2[/mm] usw. raus, eben der
> Nebendiagonale entsprechend.

Für [mm] $\lambda=0$ [/mm] hast Du das Gleichungssystem $Av=0v$. Jetzt multiplizier mal Dein A mit dem v und Du wirst sehen, daß da definitiv nicht 0 rauskommt.

>  
> Für [mm]\lambda \neq[/mm] 0 ist dann [mm]v_1=\lambda[/mm] und [mm]v_2=-\lambda, v_3=-1/2\lambda[/mm]
> usw. gemäß [mm]v_j=1/(j-1)*\lambda.[/mm]

Nein.

> Ich hoffe ich habe [mm]v_\lambda[/mm] hier richtig interpretiert!

Ich weiß nicht, was es da zu interpretieren gibt. Du sollst das lineare Gleichungssystem

[mm] $(A-\lambda\cdot{}\mathbb{E})v=\pmat{-\lambda&1&0&0&\ldots\\0&-\lambda&2&0&\ldots\\0&0&-\lambda&3&\ldots\\0&0&0&-\lambda&\ldots\\\vdots&\vdots&\vdots&\vdots&\ddots} \pmat{1\\v_2\\v_3\\v_4\\\vdots} \overset{!}{=}0$ [/mm]  

lösen. Das wirst Du doch noch hinkriegen. Wenn nicht laß es für heute bleiben und schau's Dir morgen nochmal an. =)

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]