matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenEigenvektoren einer 3x3 Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Eigenvektoren einer 3x3 Matrix
Eigenvektoren einer 3x3 Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektoren einer 3x3 Matrix: Tipp
Status: (Frage) beantwortet Status 
Datum: 00:05 Mo 09.03.2009
Autor: DER-Helmut

Aufgabe
Wie berechne ich die Eigenvektoren einer 3x3 Matrix?

Folgnee Matrix:

[mm] \pmat{ -2 & 1 & 1 \\ 1 & -2 & -1 \\ -2 & 2 & 1 } [/mm]

[mm] det(\lambda*E-A) [/mm] = ...
..
[mm] \lambda [/mm] = -1

[mm] \lambda*E-A=E+A =\pmat{ -1 & 1 & 1 \\ 1 & -1 & -1 \\ -2 & 2 & 2 } [/mm]



und nu?

Danke =)

        
Bezug
Eigenvektoren einer 3x3 Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 00:38 Mo 09.03.2009
Autor: schachuzipus

Hallo DER-Helmut,

> Wie berechne ich die Eigenvektoren einer 3x3 Matrix?
>  
> Folgnee Matrix:
>  
> [mm]\pmat{ -2 & 1 & 1 \\ 1 & -2 & -1 \\ -2 & 2 & 1 }[/mm]
>  
> [mm]det(\lambda*E-A)[/mm] = ...


>  [mm]\lambda[/mm] = -1 [ok]

Es wäre schön gewesen, wenn du einige Worte bzw. Rechenschritte dazu verloren hättest, wie du auf diesen (3-fachen) Eigenwert gekommen bist.

Das hätte langwieriges Nachrechnen meinerseits erspart ;-)


>  
> [mm]\lambda*E-A=E+A =\pmat{ -1 & 1 & 1 \\ 1 & -1 & -1 \\ -2 & 2 & 2 }[/mm] [notok]

Es ist doch [mm] $\lambda\cdot{}\mathbb{E}_3-A=\pmat{-1&0&0\\0&-1&0\\0&0&-1}-\pmat{ -2 & 1 & 1 \\ 1 & -2 & -1 \\ -2 & 2 & 1 }=\pmat{ 1 & -1 & -1 \\ -1 & 1 & 1 \\ 2 & -2 & -2 }$ [/mm]

Bestimme nun den Rang dieser Matrix, bringe sie also auf Zeilenstufenform.

Zu bestimmen ist die Lösungsgesamtheit dieses LGS [mm] $((-1)\cdot{}\mathbb{E}_3-A)\cdot{}\vec{x}=\vec{0}$ [/mm]

Das ist der Kern von [mm] $(-1)\cdot{}\mathbb{E}_3-A$ [/mm]

>  
>
>
> und nu?
>  
> Danke =)


LG

schachuzipus

Bezug
                
Bezug
Eigenvektoren einer 3x3 Matrix: Rückemeldung
Status: (Frage) beantwortet Status 
Datum: 00:53 Mo 09.03.2009
Autor: DER-Helmut

Aufgabe
Das wie ich auf die Lösungsgesamtheit komme verstehe ich nciht,

der Rang ist 1! ...

Danke im Voraus!

Bezug
                        
Bezug
Eigenvektoren einer 3x3 Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 00:57 Mo 09.03.2009
Autor: schachuzipus

Hallo nochmal,

> Das wie ich auf die Lösungsgesamtheit komme verstehe ich
> nciht,
>
> der Rang ist 1! ...  [ok]

Jo, wie sieht die Matrix in ZSF aus und wie ist die Lösungsmenge = Lösungsgesamtheit?

Du hast mit 1 Gleichung in 3 Unbekannten ja 2 freie Variablen, setze etwa [mm] $x_3=t$ [/mm] und [mm] $x_2=s$ [/mm] mit [mm] $s,t\in\IR$ [/mm] und drücke [mm] $x_1$ [/mm] in Abh. von $s,t$ aus ...

>
> Danke im Voraus!


Bitte im Nachhinein :-)

LG

schachuzipus

Bezug
                                
Bezug
Eigenvektoren einer 3x3 Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:04 Mo 09.03.2009
Autor: DER-Helmut

ok werde morgen weiter machen... ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]