matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenvektoren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Eigenwerte" - Eigenvektoren
Eigenvektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektoren: Anzahl der Eigenvektoren
Status: (Frage) beantwortet Status 
Datum: 15:06 Sa 06.06.2009
Autor: Anaximander

Aufgabe
Bitte seht auf meine Frage.

Wieviele Eigenvektoren hat ein bestimmter Raum, z.B. im 3-dimensionalen Raum? Wonach richtet sich das? Hat das was mit der Anzahl der Eigenwerte oder der algebraischen oder der geometrischen Vielfachheit zu tun ?

Vielen Dank für jede Hilfe

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Sa 06.06.2009
Autor: angela.h.b.


> Bitte seht auf meine Frage.
>  Wieviele Eigenvektoren hat ein bestimmter Raum,

Hallo,

die Frage als solche ist doch schonmal vollkommen kraus: es haben nicht Räume Eigenvektoren, sondern Endomorphismen bzw. nxn-Matrizen.

> z.B. im
> 3-dimensionalen Raum?

Betrachten wir also Endomorphismen des [mm] \IR³ [/mm] bzw. 3x3-Matrizen.

> Wonach richtet sich das? Hat das was
> mit der Anzahl der Eigenwerte oder der algebraischen oder
> der geometrischen Vielfachheit zu tun ?

Zunächst mal: wenn ein Vektor v Eigenvektor zum Eigenwert [mm] \lambda [/mm] ist, dann gibt es neben v unendlich viele Eigenvektoren zum EW [mm] \lambda, [/mm] nämlich alle von 0 verschiedenen Vielfachen von v.  (Das solltest Du Dir unbedingt klarmachen.)


Aber Du willst wahrscheinlich etwas anderes fragen: wieviele linear unabhängige Eigenvektoren gibt es?

Das hat etwas mit der Anzahl der Eigenwerte zu tun und mit ihrer geometrischen Vielfachheit.

Man findet so viele linear unabhängige Eigenwerte wie die Summe der geometrischen Vielfachheiten ist.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]