matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraEigenvektor und Eigenraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Eigenvektor und Eigenraum
Eigenvektor und Eigenraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektor und Eigenraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:21 Do 20.07.2006
Autor: cloe

Aufgabe
Gegeben sie die Matrix

[mm] \pmat{ 1 & 0 & 1 \\ 2 & 2 & 1 \\ 4 & 2 & 1} [/mm]

Bestimme die Eigenwerte, Eigenvektoren und die Basis vom Eigenraum.

Hallo,

also mein Ansatz zu dieser Aufgabe lautet:

charakteristisches Polynom:  [mm] P(x)=x^3 [/mm] - [mm] 4x^2 [/mm] - x + 4

Eigenwerte: 1, -1, -4

Leider weiß ich nicht wie man die Eigenvektroen und die Basis vom Eigenraum bestimmt. Kann mir da bitte jemand weiter helfen? Gibt es Formeln für die Bestimmung von Eigenwerten, Eigenräumen und Basen von Eigenräumen?

Danke im voraus.

        
Bezug
Eigenvektor und Eigenraum: Antwort
Status: (Antwort) fertig Status 
Datum: 09:16 Do 20.07.2006
Autor: Event_Horizon

Nun, Eigenvektoren sind ja Vektoren, die bei Multiplikation mit der Matrix einfach nur um einen bestimmten Faktor vergrößert / verkleinert werden, dieser Faktor ist der Eigenwert.

Beispielsweise für deinen letzten Eigenwert -4:
$ [mm] \pmat{ 1 & 0 & 1 \\ 2 & 2 & 1 \\ 4 & 2 & 1} \vektor{x \\ y \\ z}=-4\vektor{x \\ y \\ z}$ [/mm]

Dieses Gleichungssystem mußt du lösen. Es ist nicht eindeutig, sondern wird immer von einem Parameter, z.B. der z-Komponente abhängig sein. Die Lösung lönnte so aussehen: [mm] $\vektor{f(z) \\ g(z) \\ z}$. [/mm] Dies ist auch klar, denn dieses prinzip der Eigenvektoren gilt ja für alle Vektoren, die in die eine Richtung zeigen, daher ist die Lösung eine (Ursprungs)Grade.

Durch Festlegen des Parameters erhälst du dann einen einzelnen Vektor. Es wäre schön, wenn du dem Parameter so wählst, daß die Länge des Vektors 1 ist, das muß aber nicht sein.

Dieses Verfahren machst du für alle drei Eigenwerte separat, du erhälst so drei unterschiedliche Eigenvektoren, die auch gleichzeitig eine Basis des Eigenraumes bilden. In diesem Eigenraum hat die  Matrix dann die Form $ [mm] \pmat{ 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -4}$ [/mm] (du mußt die Eigenvektoren in der gleichen Reihenfolge als Basis aufschreiben, wie die Eigenwerte in dieser Matrix)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]