matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenvektor Berechnen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Eigenwerte" - Eigenvektor Berechnen
Eigenvektor Berechnen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektor Berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:56 Mi 10.09.2008
Autor: Soldi01

Aufgabe
Berechne von der Matrix [mm]A=\pmat{1&3\\0&2}[/mm] die Eigenvektoren.

Hi,
also ich habe folgende Frage, undzwar bei der in der Aufgabenstellung genannter Matrix soll ich die Eigenvektoren berechnen.
Wenn Ich die Eigenwerte berechne ist noch alles wie in der Lösung, aber als Eigenvektor bekomme ich nur [mm] \vektor{0\\0}[/mm] raus.
Hier meine Rechnung:
[mm] \lambda_{1}=1, \lambda_{2}=2;A - \lambda_{1} \cdot E = \pmat{0&3\\0&1}[/mm] soweit so gut und Gauss auf das Ergebnis angewendet ergibt [mm] \pmat{0&3\\0&0} \Rightarrow x_{3}=r \Rightarrow 3\cdot r=0 \Rightarrow \hat x = \vektor{0\\0} [/mm] (r=Parameter, [mm]\hat x =[/mm] Eigenvektor).
Aber [mm]\vektor{0\\0}[/mm] ist ja laut Definition kein Eigenvektor... Könnt Ihr mir sagen was ich falsch gemacht habe????

Cya
Brian

        
Bezug
Eigenvektor Berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:05 Mi 10.09.2008
Autor: fred97


> Berechne von der Matrix [mm]A=\pmat{1&3\\0&2}[/mm] die
> Eigenvektoren.
>  Hi,
>  also ich habe folgende Frage, undzwar bei der in der
> Aufgabenstellung genannter Matrix soll ich die
> Eigenvektoren berechnen.
>  Wenn Ich die Eigenwerte berechne ist noch alles wie in der
> Lösung, aber als Eigenvektor bekomme ich nur [mm]\vektor{0\\0}[/mm]
> raus.
>  Hier meine Rechnung:
>  [mm]\lambda_{1}=1, \lambda_{2}=2;A - \lambda_{1} \cdot E = \pmat{0&3\\0&1}[/mm]


1 und 2 sind Eigenwerte der Matrix


> soweit so gut und Gauss auf das Ergebnis angewendet ergibt
> [mm]\pmat{0&3\\0&0} \Rightarrow x_{3}=r \Rightarrow 3\cdot r=0 \Rightarrow \hat x = \vektor{0\\0}[/mm]
> (r=Parameter, [mm]\hat x =[/mm] Eigenvektor).

Was Du da gemacht hast ist mir schleierhaft !!

Aber man sieht:  [mm] \vektor{1 \\ 0} [/mm] ist ein Eigenvektor zum Eigenwert 1.

FRED



>  Aber [mm]\vektor{0\\0}[/mm] ist ja laut Definition kein
> Eigenvektor... Könnt Ihr mir sagen was ich falsch gemacht
> habe????
>  
> Cya
>  Brian


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]