matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisEigenschaft einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Eigenschaft einer Funktion
Eigenschaft einer Funktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenschaft einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:09 So 22.01.2006
Autor: Timowob

Aufgabe
Genau welche Eigenschaft besitzt eine Funktion f: [0;1]->[0;1] mit f(0)=0, wenn für jede Nullfolge [mm] (x_k) [/mm] im Intervall [0;1] gerade [mm] f(x_k) \overrightarrow{k \overrightarrow{ \infty}} [/mm] erfüllt ist?

Hallo,

ich denke die Funktion ist stetig, weil:

f(0)=0 und [mm] \limes_{k\rightarrow\infty} f(x_k)=0 [/mm]

Stimmt das?

Liebe Grüße

Timo

        
Bezug
Eigenschaft einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:38 So 22.01.2006
Autor: Stefan

Hallo Timo!

Die Funktion ist stetig in [mm] $\red{x=0}$, [/mm] ja.

Mehr kann man nicht aussagen.

Die Funktion "ist stetig" würde bedeuten, dass sie in jedem Punkt ihres Definitionsbereiches stetig ist.

Liebe Grüße
Stefan

Bezug
                
Bezug
Eigenschaft einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:58 So 22.01.2006
Autor: Timowob

Hallo Stefan,

vielen Dank für Deine Antwort.

Woran erkennst Du denn, daß die Funktion stetig ist?

Viele Grüße

Timo

Bezug
                        
Bezug
Eigenschaft einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:35 So 22.01.2006
Autor: leduart

Hallo Timo
Es ist die DEFINITION der Stetigkeit in einem Punkt. Es sei denn ihr habt nur die [mm] \varepsilon [/mm] - [mm] \delta [/mm] Definition benutzt, und nicht die Äquivalenz der 2 Def. (einmal über Folgen und einmal über [mm] \varepsilon [/mm] - [mm] \delta) [/mm] bewiesen. Dann musst dus hier noch nach [mm] \varepsilon [/mm] - [mm] \delta [/mm]  beweisen.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]