matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Eigenwerte" - Eigenräume
Eigenräume < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:04 Sa 30.01.2010
Autor: zocca21

Aufgabe
Bestimmen Sie für die Matrix
A = [mm] \pmat{ 1 & -2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & -3} [/mm]
alle reellen Eigenwerte
und die dazugehörigen Eigenräume!

Also Eigenwerte hab ich bestimmt mit

[mm] \lambda_1= [/mm] -3
[mm] \lambda_2= [/mm] 3
[mm] \lambda_3= [/mm] -1

Nun zu den Eigenvektoren:

[mm] V(\lambda_1) [/mm] = [mm] \pmat{ 4 & -2 & 0 \\ -2 & 4 & 0 \\ 0 & 0 & 0 } [/mm] = 0

So nun normalerweise brauch ich ja immer eine Nullzeile oder Spalte..die habe ich ja nun.

Dann setze ich ja z.B. x3= eine Variable und rechne dann meinen Eigenvektor aus bzw. auch dann den Eigenraum..

Wie gehe ich hier vor wenn ich eine Nullspalte und Nullzeile habe..
X3=0 eigentlich...und dass der Nullvektor null ergibt ist ja klar, aber welcher noch?

Danke


        
Bezug
Eigenräume: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Sa 30.01.2010
Autor: angela.h.b.


> Bestimmen Sie für die Matrix
>  A = [mm]\pmat{ 1 & -2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & -3}[/mm]
>  
> alle reellen Eigenwerte
>  und die dazugehörigen Eigenräume!
>  Also Eigenwerte hab ich bestimmt mit
>  
> [mm]\lambda_1=[/mm] -3
>  [mm]\lambda_2=[/mm] 3
>  [mm]\lambda_3=[/mm] -1
>  
> Nun zu den Eigenvektoren:
>  
> [mm]V(\lambda_1)[/mm] = [mm]\pmat{ 4 & -2 & 0 \\ -2 & 4 & 0 \\ 0 & 0 & 0 }[/mm]

Hallo,

diese Matrix bringst Du nun erstmal auf Zeilenstufenform

[mm] -->\pmat{ 4 & -2 & 0 \\ & 1 & 0 \\ 0 & 0 & 0 } [/mm]

Die führenden Zeilenelemente stehen in Salte 1 und 2, also kannst Du die dritte Variable frei wählen:

>  
> Dann setze ich ja z.B. x3= eine Variable und rechne dann
> meinen Eigenvektor aus bzw. auch dann den Eigenraum..

[mm] x_3=t [/mm]

Aus Zeile 2:
[mm] x_2=0 [/mm]

Aus Zeile 1:
[mm] 4x_1=0+2x_2=0, [/mm] also
[mm] x_1=0. [/mm]

Damit haben die Vektoren des Eigenraumes zu -3 die Gestalt [mm] t*\vektor{0\\0\\1}, [/mm] somit ist [mm] \vektor{0\\0\\1} [/mm] eine basis des Eigenraumes.

>  
> Wie gehe ich hier vor wenn ich eine Nullspalte und
> Nullzeile habe..
>  X3=0 eigentlich...

Nein. davon steht nirgens was.

Gruß v. Angela

Bezug
                
Bezug
Eigenräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 So 31.01.2010
Autor: zocca21

Okay, super Danke.

Nun hab ich für [mm] \lambda_2 [/mm] =3
den Eigenraum v* [mm] \vektor{-1 \\ 1\\ 0 } [/mm]

Bei [mm] \lambda_3 [/mm] =1
den Eigenraum v* [mm] \vektor{1 \\ 1\\ 0 } [/mm]

Hoffe das stimmt...

Wenn ich nun eine Matrix in Diagonalform erhalten würde und also keine Nullzeile erstellen könnte, wie würde ich dann auf die Eigenvektoren kommen?




Bezug
                        
Bezug
Eigenräume: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 So 31.01.2010
Autor: angela.h.b.


> Okay, super Danke.
>  
> Nun hab ich für [mm]\lambda_2[/mm] =3
>  den Eigenraum v* [mm]\vektor{-1 \\ 1\\ 0 }[/mm]
>  
> Bei [mm]\lambda_3[/mm] =1
> den Eigenraum v* [mm]\vektor{1 \\ 1\\ 0 }[/mm]
>  
> Hoffe das stimmt...

Hallo,

ja.

>  
> Wenn ich nun eine Matrix in Diagonalform erhalten würde
> und also keine Nullzeile erstellen könnte, wie würde ich
> dann auf die Eigenvektoren kommen?

Du meinst, wenn Du den Eigenwert [mm] \lambda [/mm] ausgerechnet hast, und [mm] A-\lambda [/mm] E dann vollen Rang hat?
Das wird nicht passieren, es sei denn Du hast irgendwas falsch gerechnet.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]