matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesEigenräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Eigenräume
Eigenräume < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenräume: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:42 So 10.05.2009
Autor: chrissi2709

Aufgabe
Bestimmen Sie alle Eigenwerte und die Dimensionen aller Eigenräume für die Matrizen
M = [mm] \pmat{ 3 & \neg2 & 4 \\ 4 & \neg3 & 4 \\ \neg2 & 1 & \neg3} [/mm]

und N = [mm] \pmat{ 3 & \neg2 & 4 \\ 3 & \neg3 & 2 \\ \neg2 & 1 & \neg3} [/mm]

und entscheiden Sie, ob M und N ähnlich sind.

Hallo an alle!
Wie bestimme ich hier denn die dimension der eigenräume?

        
Bezug
Eigenräume: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 So 10.05.2009
Autor: schachuzipus

Hallo Christina,

> Bestimmen Sie alle Eigenwerte und die Dimensionen aller
> Eigenräume für die Matrizen
>  M = [mm]\pmat{ 3 & \neg2 & 4 \\ 4 & \neg3 & 4 \\ \neg2 & 1 & \neg3}[/mm]
>  
> und N = [mm]\pmat{ 3 & \neg2 & 4 \\ 3 & \neg3 & 2 \\ \neg2 & 1 & \neg3}[/mm]
>  
> und entscheiden Sie, ob M und N ähnlich sind.
>  Hallo an alle!
>  Wie bestimme ich hier denn die dimension der eigenräume?

Du musst die Eigenwerte ausrechnen und dann zu jedem Eigenwert [mm] $\lambda$ [/mm] den Eigenraum, das ist der Kern vom [mm] $M-\lambda\cdot{}\mathbb{E}_3$ [/mm] (repektive mit $N$).

Und wie du Eigenwerte und Eigenräume berechnest, weißt du bestimmt, davon dürfte es in der letzten Zeit in der VL gegange sein ;-)


Dann fang' mal an, du kannst ja (Zwischen-)Ergebnisse posten und wir schauen drüber

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]