matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenfunktionen berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Eigenwerte" - Eigenfunktionen berechnen
Eigenfunktionen berechnen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenfunktionen berechnen: Hilfe zur Berechnung
Status: (Frage) beantwortet Status 
Datum: 15:53 Di 31.05.2011
Autor: leu89

Aufgabe 1
Wir betrachten den Unterraum [mm] C^2_0 ([0; \pi]) := \{ f \in C^2([0; \pi]) : f(0) = f(\pi) = 0 \} [/mm]
von [mm] C^2([0; \pi]) [/mm] und die lineare Abbildung
[mm] A: C^2_0([0, \pi]) \rightarrow C^2([0, \pi]), f \rightarrow f'' [/mm]

a) Man bestimme die Eigenwerte [mm] \lambda [/mm] und Eigenvektoren [mm] \phi \in C^2_0([0,\pi]) [/mm]  (Eigenfunktionen) von A, d.h. [mm] A\phi [/mm] = [mm] \lambda\phi. [/mm]

Aufgabe 2
b) Man zeige, dass A bezüglich des Skalarproduktes
[mm] \left\langle f,g \right\rangle = \int_{0}^{\pi}f(x)g(x)\, dx [/mm]
für [mm] f,g \in C^2_0([0,\pi]) [/mm] symmetrisch ist, d.h. [mm] \left\langle Af,g \right\rangle = \left\langle f,Ag \right\rangle [/mm], und schliesse daraus, dass die Eigenfunktion von A ein orthogonales System bilden.

Also ich bräuchte erst einmal Hilfe zur  ersten Aufgabe. Ich habe keine Ahnung, wie ich die Eigenfunktion berechnen soll. Was ich kann, sind Eigenwerte und Vektoren einer Matrix berechnen, wie das bei einer Funktion geht, weiss ich allerdings nicht, ich wäre euch sehr dankbar, wenn ihr  mir  Helfen könntet.

        
Bezug
Eigenfunktionen berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 Di 31.05.2011
Autor: fred97


> Wir betrachten den Unterraum [mm]C^2_0 ([0; \pi]) := \{ f \in C^2([0; \pi]) : f(0) = f(\pi) = 0 \}[/mm]
>  
> von [mm]C^2([0; \pi])[/mm] und die lineare Abbildung
>  [mm]A: C^2_0([0, \pi]) \rightarrow C^2([0, \pi]), f \rightarrow f''[/mm]
>  
> a) Man bestimme die Eigenwerte [mm]\lambda[/mm] und Eigenvektoren
> [mm]\phi \in C^2_0([0,\pi])[/mm]  (Eigenfunktionen) von A, d.h.
> [mm]A\phi[/mm] = [mm]\lambda\phi.[/mm]
>  b) Man zeige, dass A bezüglich des Skalarproduktes
> [mm]\left\langle f,g \right\rangle = \int_{0}^{\pi}f(x)g(x)\, dx[/mm]
>  
> für [mm]f,g \in C^2_0([0,\pi])[/mm] symmetrisch ist, d.h.
> [mm]\left\langle Af,g \right\rangle = \left\langle f,Ag \right\rangle [/mm],
> und schliesse daraus, dass die Eigenfunktion von A ein
> orthogonales System bilden.
>  Also ich bräuchte erst einmal Hilfe zur  ersten Aufgabe.
> Ich habe keine Ahnung, wie ich die Eigenfunktion berechnen
> soll. Was ich kann, sind Eigenwerte und Vektoren einer
> Matrix berechnen, wie das bei einer Funktion geht, weiss
> ich allerdings nicht, ich wäre euch sehr dankbar, wenn ihr
>  mir  Helfen könntet.


[mm] \lambda [/mm] ist Eigenwert von A und [mm] \phi [/mm] ist Eigenfunktion, wenn [mm] \phi \in [/mm] $ [mm] C^2([0; \pi]) [/mm] $, [mm] \phi \ne [/mm] 0 und

             [mm] $\lambda \phi [/mm] = [mm] \phi''$ [/mm]

Löse also das Randwertproblem

                [mm] $\lambda \phi [/mm] = [mm] \phi''$ \phi(0)=\phi( \pi) [/mm] =0

FRED


Bezug
                
Bezug
Eigenfunktionen berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:35 Di 31.05.2011
Autor: leu89

Hmm, dies hilft mir irgendwie nicht weiter. Wie kann ich die Randwertprobleme lösen? Ich weiss  ja nicht  ob die Funktion ein Polynom, eine Winkelfunktion, Wurzelfunktion, etc. ist. Ich kann also nicht einfach integrieren...

Bezug
                        
Bezug
Eigenfunktionen berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Di 31.05.2011
Autor: MathePower

Hallo leu89,

> Hmm, dies hilft mir irgendwie nicht weiter. Wie kann ich
> die Randwertprobleme lösen? Ich weiss  ja nicht  ob die
> Funktion ein Polynom, eine Winkelfunktion, Wurzelfunktion,
> etc. ist. Ich kann also nicht einfach integrieren...


Löse zunächst die DGL

[mm]\lambda \phi = \phi''[/mm]


Dann setzt Du die Randbedingungen ein,
und überprüfst, wechle Lösungen Sinn machen.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]