matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenEbenenschar: P.-Form->KO-Form
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Geraden und Ebenen" - Ebenenschar: P.-Form->KO-Form
Ebenenschar: P.-Form->KO-Form < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenenschar: P.-Form->KO-Form: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:27 So 15.11.2009
Autor: kaiD

Aufgabe
[mm] E_{a}: \vec{x}= \vektor{1 \\ 1 \\ -8} [/mm] + r* [mm] \vektor{-a \\ 0 \\ -2} [/mm] + s* [mm] \vektor{2 \\ -1 \\ 2} [/mm]
Bestimmen sie eine Koordinatenform der Ebenenschar [mm] E_{a}! [/mm]
(mögl. Lösung: [mm] E_{a}: 2x_{1} [/mm] + [mm] (4-2a)x_{2} [/mm] - [mm] ax_{3} [/mm] = 6+6a

Hallo,
trotz einer gegebenen möglichen Lösung, komme ich nicht auf ein Ergebnis, dass ansatzweise so aussieht.
Mein erster Ansatz war eine handelsübliche Umformung, bei der ich auf
s= [mm] 1-x_{2} [/mm]
r = [mm] (1-2x_{2}+2-x_{1}) [/mm] / a
komme. Nun sehe ich allerdings schon, dass ich so nicht auf die mögliche Lösung komme.

Ansatz Nr. 2 wäre das suchen eines Normalenvektors, wo ich allerdings schon am Anfang bei
-a [mm] n_{1} [/mm] - 2 [mm] n_{2} [/mm] = 0
2 [mm] n_{1} [/mm] - [mm] n_{2} [/mm] + 2 [mm] n_{3} [/mm] = 0
scheitere.

Kann mir jemand behilflich sein? Ich stehe irgendwie auf dem Schlauch, da Umformungen ja nicht zu den schwersten Aufgaben zählen...

Danke!

        
Bezug
Ebenenschar: P.-Form->KO-Form: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 So 15.11.2009
Autor: MathePower

Hallo KaiD,

> [mm]E_{a}: \vec{x}= \vektor{1 \\ 1 \\ -8}[/mm] + r* [mm]\vektor{-a \\ 0 \\ -2}[/mm]
> + s* [mm]\vektor{2 \\ -1 \\ 2}[/mm]
>  Bestimmen sie eine
> Koordinatenform der Ebenenschar [mm]E_{a}![/mm]
>  (mögl. Lösung: [mm]E_{a}: 2x_{1}[/mm] + [mm](4-2a)x_{2}[/mm] - [mm]ax_{3}[/mm] =
> 6+6a
>  Hallo,
>  trotz einer gegebenen möglichen Lösung, komme ich nicht
> auf ein Ergebnis, dass ansatzweise so aussieht.
>  Mein erster Ansatz war eine handelsübliche Umformung, bei
> der ich auf
>  s= [mm]1-x_{2}[/mm]
>  r = [mm](1-2x_{2}+2-x_{1})[/mm] / a
>  komme. Nun sehe ich allerdings schon, dass ich so nicht
> auf die mögliche Lösung komme.
>  
> Ansatz Nr. 2 wäre das suchen eines Normalenvektors, wo ich
> allerdings schon am Anfang bei
>  -a [mm]n_{1}[/mm] - 2 [mm]n_{2}[/mm] = 0
>  2 [mm]n_{1}[/mm] - [mm]n_{2}[/mm] + 2 [mm]n_{3}[/mm] = 0
>  scheitere.
>  
> Kann mir jemand behilflich sein? Ich stehe irgendwie auf
> dem Schlauch, da Umformungen ja nicht zu den schwersten
> Aufgaben zählen...


Es bietet sich hier an, aus den Gleichungen

[mm]x_{2}=1-s[/mm]

[mm]x_{3}=-8-2*r+2*s[/mm]

die Parameter r und s zu bestimmen,
und in die verbleibende Gleichung

[mm]x_{1}=1-a*r+2*s[/mm]

einzusetzen.


> Danke!



Gruss
MathePower

Bezug
        
Bezug
Ebenenschar: P.-Form->KO-Form: Antwort
Status: (Antwort) fertig Status 
Datum: 23:28 So 15.11.2009
Autor: glie


> [mm]E_{a}: \vec{x}= \vektor{1 \\ 1 \\ -8}[/mm] + r* [mm]\vektor{-a \\ 0 \\ -2}[/mm]
> + s* [mm]\vektor{2 \\ -1 \\ 2}[/mm]
>  Bestimmen sie eine
> Koordinatenform der Ebenenschar [mm]E_{a}![/mm]
>  (mögl. Lösung: [mm]E_{a}: 2x_{1}[/mm] + [mm](4-2a)x_{2}[/mm] - [mm]ax_{3}[/mm] =
> 6+6a
>  Hallo,
>  trotz einer gegebenen möglichen Lösung, komme ich nicht
> auf ein Ergebnis, dass ansatzweise so aussieht.
>  Mein erster Ansatz war eine handelsübliche Umformung, bei
> der ich auf
>  s= [mm]1-x_{2}[/mm]
>  r = [mm](1-2x_{2}+2-x_{1})[/mm] / a
>  komme. Nun sehe ich allerdings schon, dass ich so nicht
> auf die mögliche Lösung komme.
>  
> Ansatz Nr. 2 wäre das suchen eines Normalenvektors, wo ich
> allerdings schon am Anfang bei
>  -a [mm]n_{1}[/mm] - 2 [mm]n_{2}[/mm] = 0
>  2 [mm]n_{1}[/mm] - [mm]n_{2}[/mm] + 2 [mm]n_{3}[/mm] = 0
>  scheitere.
>  
> Kann mir jemand behilflich sein? Ich stehe irgendwie auf
> dem Schlauch, da Umformungen ja nicht zu den schwersten
> Aufgaben zählen...
>  
> Danke!


Hallo,

wenn du bereits das Vektorprodukt oder Kreuzprodukt kennst, kannst du auf diese Weise einen Normalenvektor bestimmen:


[mm] $\vektor{-a \\ 0 \\ -2}\times \vektor{2 \\ -1 \\ 2}=\vektor{-2 \\ 2a-4 \\ a}$ [/mm]

Also kannst du als Normalenvektor der Ebene den Vektor

[mm] $\vektor{-2 \\ 2a-4 \\ a}$ [/mm] oder auch das (-1)-fache, also [mm] $\vektor{2 \\ 4-2a \\ -a}$ [/mm] nehmen.

Gruß Glie

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]