matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenEbenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Geraden und Ebenen" - Ebenen
Ebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:14 Fr 07.09.2012
Autor: pappnase

Aufgabe
A(2/2/0)
B(0/1/-1)
C(3/0/-3)    

- Dreieck bilden, Fläche ausrechnen.
- Ebene E1 aus den Punkten bilden
- zu dieser Ebene parallel verlaufende Ebene E2 bilden, die genau 2LE Abstand zu E1 hat.

Hallo,

Ich habe zunächst versucht das Dreieck in ein Koordinatensystem einzuzeichnen und festgestellt, dass vektor a und vektor b im Prinzip aufeinanderliegen.

Wie kann das sein. bei einem Dreieck?

Ich habe die Aufgabe dennoch gerechnet, es kamen 5,246 Flächeneinheiten raus.

Hauptproblem bei der Aufgabe ist allerdings das bilden der parallelen Ebene.

Für E1 habe ich in der Parameterform

E: (2/2/0) + p(-2/-1/-1) + q(1/-2/-3)

Koordinatenform:  E:  -x+7y-5z=12

Ich weiß nicht wie ich aus den gegebenen Angaben E2 so bilden kann, dass sie parallel ist und 2Le abstand zu E1 hat.

Vielen Dank schonmal für Hilfe!!




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:51 Fr 07.09.2012
Autor: meili

Hallo,

> A(2/2/0)
>  B(0/1/-1)
>  C(3/0/-3)    
>
> - Dreieck bilden, Fläche ausrechnen.
>  - Ebene E1 aus den Punkten bilden
>  - zu dieser Ebene parallel verlaufende Ebene E2 bilden,
> die genau 2LE Abstand zu E1 hat.
>  Hallo,
>  
> Ich habe zunächst versucht das Dreieck in ein
> Koordinatensystem einzuzeichnen und festgestellt, dass
> vektor a und vektor b im Prinzip aufeinanderliegen.

Da muss etwas falsch gelaufen sein. Vielleicht ungünstige Perspektive?
A liegt in der xy-Ebene, B in der yz-Ebene und C in der xz-Ebene.
Vektor a und Vektor b kannst Du auch berechnen.

>  
> Wie kann das sein. bei einem Dreieck?
>
> Ich habe die Aufgabe dennoch gerechnet, es kamen 5,246
> Flächeneinheiten raus.

... und ich 4,33
Wie hast Du das gerechnet?

>  
> Hauptproblem bei der Aufgabe ist allerdings das bilden der
> parallelen Ebene.
>  
> Für E1 habe ich in der Parameterform
>  
> E: (2/2/0) + p(-2/-1/-1) + q(1/-2/-3)

[ok]

>
> Koordinatenform:  E:  -x+7y-5z=12
>  
> Ich weiß nicht wie ich aus den gegebenen Angaben E2 so
> bilden kann, dass sie parallel ist und 2Le abstand zu E1
> hat.

Eine zu E1 parallele Ebene hat die gleichen Richtungsvektoren wie E1.
Damit E2 genau den Abstand von 2LE hat, kann man einen zu den beiden
Richtungsvektoren orthogonalen Vektor bestimmen mit der Länge 2LE.
Diesen dann zu dem Aufpunkt addieren.

>  
> Vielen Dank schonmal für Hilfe!!
>  
>
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß
meili

Bezug
                
Bezug
Ebenen: Rechenweg und Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:23 Fr 07.09.2012
Autor: pappnase

Aufgabe
A(2/2/0)
B(0/1/-1)
C(3/0/-3)    
- Dreieck bilden, Fläche ausrechnen.
- Ebene E1 aus den Punkten bilden
- zu dieser Ebene parallel verlaufende Ebene E2 bilden,
die genau 2LE Abstand zu E1 hat.

Hallo, vielen Dank erstmal für deine Antwort!

Ja, ich schätze dann liegt es an der Perspektive, denn von diesen Ebenen (xy,yz,xz) habe ich nochnicht gehört. (Wir machen das Thema nur im schnelldurchlauf)

Kannst du mir kurz erklären was du damit meinst?

Dann zu der Fläche, ich habe folgerndermaßen gerechnet:

mit einer Hilfsebene in d. Punktnormalenform

H:(-2/-1/-1) ["x-vektor" - (3/0/-3) ] = 0

H: -2x-y-z=-9

dann habe ich aus den Punkten A und B des dreiecks eine Gerade erstellt:

g:x= (2/2/0) + r(-2/-1/-1)

Dann den Schnittpunkt zwischen H;g ausgerechnet, dieser lautete

S g;H (3/2,5/0,5)

Anschließend den Abstand zwischen S und Punkt C ausgerechnet um die Höhe des Dreiecks zu erhalten, ich kam auf

S->C = 4,3 LE,

und zuletzt habe ich mit der Formel    ( Grundseite x Höhe ) geteilt durch 2 die Fläche ausgerechnet, für die Grundseite hatte ich die Länge von A nach B genommen, also

(2,44 mal 4,3) geteilt durch 2 = 5,246 Flächeneinheiten



Zu der zweiten Aufgabe:

"Eine zu E1 parallele Ebene hat die gleichen Richtungsvektoren wie E1.
Damit E2 genau den Abstand von 2LE hat, kann man einen zu den beiden
Richtungsvektoren orthogonalen Vektor bestimmen mit der Länge 2LE.
Diesen dann zu dem Aufpunkt addieren."

Das verstehe ich leider nicht. Also dass die parallele Ebene die gleichen Richtungsvektoren haben muss ist einleuchtend, aber was ist ein orthogonaler Vektor? Und wie macht man das, ich habe das vorher nochnie gemacht, könntest du mir das vielleicht an einem beliebigen Beispielt kurz beschreiben?


Vielen Dank schonmal im vorraus!!





Bezug
                        
Bezug
Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Fr 07.09.2012
Autor: leduart

hallo
orthogonal ist senkrecht, auch normal  wenn du die Koordinatendarstellung
-x+7y-5z=12 hast ist ein Vektor , der senkrecht auf der Ebene steht [mm] \vec{n}=\vektor{-1 \\ 7\\ -5} [/mm]
davon einen Einheitsvektor bilden und ihn 2 mal zu dem aufpunkt addieren oder subtrahieren.,
die xy- Ebene ist die Eben, die von der x und y Achse aufgespannt wird, (die z_Achse ist senkrecht dazu) also wird die Ebene durch z=0 beschriebern entsprechend die anderen sogenannten Koordinatenebenen .
Wie du die Fläche berechnest versteh ich nicht ganz aber in H ist ein Fehler, rechts steht -3, nicht -9 rechne nach!
kennt ihr das Kreuzprodukt? dann ist die Fläche A= [mm] |a\times [/mm] b|/2
Gruss leduart

Bezug
                                
Bezug
Ebenen: Einheitsvektor
Status: (Frage) beantwortet Status 
Datum: 19:06 Fr 07.09.2012
Autor: pappnase

Aufgabe
-x+7y-5z=12

- parallele Ebene bilden mit 2 LE abstand

Hallo,

Vielen Dank, ich habe nachgerechnet und den Fehler behoben, habe jetzt das richtige Ergebnis, auf dass auch meili gekommen ist.
Das mit den Ebenen, xy,xz,yz habe ich nun auch verstanden, danke :)

Allerdings habe ich einige Begriffsschwierigkeiten, wir nennen den Vektor der senkrecht auf der Ebene steht Normalenvektor, was aber ist ein Einheitsvektor und wie bilde ich ihn?
Und was ist ein Aufpunkt?

Angenommen (1/1/1) wäre mein Normalenvektor, was müsste ich damit machen um, wie von dir beschrieben, einen Einheitsvektor zu bilden und ihn 2 mal zu dem aufpunkt zu addieren oder subtrahieren? (Dann kann ich die eigentlich Aufgabe nach dem Schema selbst machen)



Bezug
                                        
Bezug
Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Fr 07.09.2012
Autor: MathePower

Hallo pappnase,

> -x+7y-5z=12
>
> - parallele Ebene bilden mit 2 LE abstand
>  Hallo,
>  
> Vielen Dank, ich habe nachgerechnet und den Fehler behoben,
> habe jetzt das richtige Ergebnis, auf dass auch meili
> gekommen ist.
>  Das mit den Ebenen, xy,xz,yz habe ich nun auch verstanden,
> danke :)
>  
> Allerdings habe ich einige Begriffsschwierigkeiten, wir
> nennen den Vektor der senkrecht auf der Ebene steht
> Normalenvektor, was aber ist ein Einheitsvektor und wie
> bilde ich ihn?


Der Einheitsvektor ist ein Vektor vom Betrag 1.


>  Und was ist ein Aufpunkt?

>


Das ist ein Punkt, der die obige Ebenengleichung erfüllt.

  

> Angenommen (1/1/1) wäre mein Normalenvektor, was müsste
> ich damit machen um, wie von dir beschrieben, einen
> Einheitsvektor zu bilden und ihn 2 mal zu dem aufpunkt zu
> addieren oder subtrahieren? (Dann kann ich die eigentlich
> Aufgabe nach dem Schema selbst machen)
>


Gruss
MathePower  

Bezug
                                                
Bezug
Ebenen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:46 Fr 07.09.2012
Autor: pappnase

Hi Mathepower,

vielen Dank für die Antwort, ich verstehe leider nicht was du damit meinst und kann die Aufgabe immernochnicht richtig bearbeiten.

Ich kenne diese ganzen Begriffe nicht, bräuchte eher ein Beispiel mit Zahlen an dem ich den Rechenweg nachvollziehen kann.

Lg Pappnase

Bezug
                                        
Bezug
Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:15 Fr 07.09.2012
Autor: chrisno


> Angenommen (1/1/1) wäre mein Normalenvektor, was müsste ich damit machen um,
> wie von dir beschrieben, einen Einheitsvektor zu bilden

Der Vektor (1/1/1) hat nicht die Länge 1, denn [mm] $\wurzel{1^2+1^2+1^2} [/mm] = [mm] \wurzel{3} \ne [/mm] 1$.
Die Richtung ist in Ordnung, also muss er nur auf die richtige Länge zurecht gestutzt werden. Mit dem Faktor [mm] $\bruch{1}{\wurzel{3}}$, [/mm] also der Länge des Vektors, klappt das: [mm] $\bruch{1}{\wurzel{3}} \cdot \wurzel{1^2+1^2+1^2} [/mm] = [mm] \bruch{1}{\wurzel{3}} \cdot \wurzel{3} [/mm] = 1$.

Der Aufpunkt ist ein Punkt der Ebene, von dem aus Du weitermachst. Wenn Du eine Punkt mit 2 Einheiten Abstand von der Ebene haben möchtest, dann nimmst Du erst einen Punkt der Ebene, den Aufpunkt. Zu diesem (dessen Koordinaten) addierst Du den Vektor, der Dich zwei Einheiten senkrecht von der Ebene wegbringt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]