matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenEbenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Ebenen
Ebenen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 Fr 26.11.2010
Autor: Kuriger

Hallo

In welchem Punkt der Fläche z = [mm] x^2 [/mm] + [mm] y^2 [/mm] -7 ist die Tangentialebene parallel zur Ebene z = 8x + 2y?

Ode rich kann dies auch als Funktion schreiben
f(x,y) = [mm] x^2 [/mm] + [mm] y^2 [/mm] -7
Ich kann die Werte x und y beliebig wählen und erhalte einen Output f(x,y) = z


Mein Lösungsweg wäre wie folgt: Wenn die beiden Ebenen parallel sind, müssen auch die Normalvektoren der beiden Ebenen parallel zueinander sein. Die Normalvektoren werden durch die Gradienten bestimmt.

Gradient der Fläche:
z = [mm] x^2 [/mm] + [mm] y^2 [/mm] -7 ist:
[mm] \vektor{f_x \\ f_y \\ f_z}= \vektor{2x \\ 2y \\ -1} [/mm]

Gradient der Fläche:
z = 8x + 2y ist:
[mm] \vektor{f_x \\ f_y \\ f_z}= \vektor{8 \\ 2 \\ -1} [/mm]

Nun kommt mein Problem:

Die beiden Vektoren müssen ja nicht als "Zahl übereinstimmen"
Ich versuche das mal zu erklären. Die beiden Vektoren sind ja äquivalent

[mm] \vektor{2 \\ 3 \\ 5} [/mm] = [mm] \vektor{4 \\ 6 \\ 10} [/mm]

Darum darf ich doch eigentlich nicht folgende Gleichung notieren:

[mm] \vektor{2x \\ 2y \\ -1} [/mm] = [mm] \vektor{8 \\ 2 \\ -1}. [/mm]

Sondern
[mm] \vektor{2x \\ 2y \\ -1} [/mm] = [mm] t*\vektor{8 \\ 2 \\ -1}. [/mm]

Dich ich sehe dass t = 0 sein muss, damit ich das in der Z-Koordinate hinhaut. Aber das muss doch nicht zwangsläufig so sein?

[mm] \vektor{2x \\ 2y \\ -1} [/mm] = [mm] \vektor{8 \\ 2 \\ -1}. [/mm]
2x = 8
2y = 2
x = 4
y = 1
z = [mm] 4^2 [/mm] + [mm] 1^2 [/mm] -7 = 10

P(4/1/10)

Stimmt das so?

Danke, Gruss Kuriger



        
Bezug
Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:48 Fr 26.11.2010
Autor: weduwe

würde ich auch so sehen :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]