matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraEbene schneidet Quadrik
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Ebene schneidet Quadrik
Ebene schneidet Quadrik < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebene schneidet Quadrik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 Mi 24.01.2007
Autor: sunshine111

Hallo zusammen!

Ich habe ein Problem mit einer Aufgabe. Ich rechne gerade alte Klausuren durch, bei denen auch die zu erreichende Punktezahl angegeben ist. Nur verunsichert mich, dass es auf diese Aufgabe 10 Punkte und das macht mich etwas stutzig, da sie eigentlich ganz schnell zu lösen ist.

Also, es handelt sich um folgende Aufgabe:

Im [mm] R^3 [/mm] sind die Quadrik Q: [mm] 2*x_2^2+5*x_1*x_3-2=0 [/mm] und die Ebene F: [mm] 2*x_1-x_3=0 [/mm] gegeben. Weisen sie nach, dass die Schnittkurve von Q und F ein Kreis mit Mittelpunkt (0/0/0) ist. Welchen Radius hat der Kreis?

Ich habe bisher das gerechnet:

[mm] x_3=2*x_1 [/mm]
in Q eingesetzt:
[mm] 2*x_2^2+10*x_1^2-2=0 [/mm]
[mm] 5*x_1^2+x_2^2=1 [/mm]

Allgemeine Form von einem Kreis:
[mm] (x_1-m_1)^2+(x_2-m_2)^2=r^2 [/mm]

Also kann ich, wenn ich die beiden Formen vergleiche, ablesen, dass der Mittelpunkt (0/0/0) ist und der Radius 1 beträgt? Oder vertue ich mich da völlig?
Ich weiß nicht, wie ich es anders rechnen könnte. Ich habe schon versucht, den gemischten Term bei der Quadrik zu eleminieren (mit Eigenwerten und so) aber da bin ich auf keine richtige Lösung gekommen.
Ich hoffe mir kann jemand weiterhelfen...

Grüße

Sunshine

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Ebene schneidet Quadrik: Oje!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:03 Mi 24.01.2007
Autor: Zwerglein

Hi, sunshine,

> Ich habe ein Problem mit einer Aufgabe. Ich rechne gerade
> alte Klausuren durch, bei denen auch die zu erreichende
> Punktezahl angegeben ist. Nur verunsichert mich, dass es
> auf diese Aufgabe 10 Punkte und das macht mich etwas
> stutzig, da sie eigentlich ganz schnell zu lösen ist.
>  
> Also, es handelt sich um folgende Aufgabe:
>  
> Im [mm]R^3[/mm] sind die Quadrik Q: [mm]2*x_2^2+5*x_1*x_3-2=0[/mm] und die
> Ebene F: [mm]2*x_1-x_3=0[/mm] gegeben. Weisen sie nach, dass die
> Schnittkurve von Q und F ein Kreis mit Mittelpunkt (0/0/0)
> ist. Welchen Radius hat der Kreis?
>  
> Ich habe bisher das gerechnet:
>  
> [mm]x_3=2*x_1[/mm]
>  in Q eingesetzt:
>  [mm]2*x_2^2+10*x_1^2-2=0[/mm]
>  [mm]5*x_1^2+x_2^2=1[/mm]

Also für mich sieht das erst mal aus wie eine Ellipse in der [mm] x_{1}x_{2}-Ebene! [/mm]
Andererseits geht das ja aber gar nicht, da das Schnittgebilde ja in der Ebene F liegen muss, nicht in der [mm] x_{1}x_{2}-Ebene. [/mm]

> Allgemeine Form von einem Kreis:
>  [mm](x_1-m_1)^2+(x_2-m_2)^2=r^2[/mm]

Problem: Das gilt nur für Kreise in der [mm] x_{1}x_{2}-Ebene; [/mm] Du musst nun überlegen, welche Gleichung ein Kreis in der vorgegebenen Ebene hat!

Leider komm' ich da im Moment auch nicht auf eine vernünftige Lösung!

mfG!
Zwerglein

Bezug
        
Bezug
Ebene schneidet Quadrik: Weitere Idee
Status: (Antwort) fertig Status 
Datum: 19:17 Mi 24.01.2007
Autor: Zwerglein

Hi, sunshine,

> Ich habe bisher das gerechnet:
>  
> [mm]x_3=2*x_1[/mm]
>  in Q eingesetzt:
>  [mm]2*x_2^2+10*x_1^2-2=0[/mm]
>  [mm]5*x_1^2+x_2^2=1[/mm]

Jetzt habe ich eine Idee!
Das Besondere am Kreis ist, dass alle Punkte vom Mittelpunkt (hier (0;0;0)) denselben Abstand haben!

Welche Koordinaten haben nun die Punkte des Schnittgebildes?
(i) [mm] x_3=2*x_1 [/mm]
(ii) [mm] 5*x_1^2+x_2^2=1 [/mm] <=> [mm] x_{2} [/mm] = [mm] \pm\wurzel{1-5x_{1}^{2}} [/mm]

Setzen wir [mm] x_{1}=k, [/mm] so ergibt sich folgende Punktmenge:

[mm] P_{k}(k; \pm\wurzel{1-5k^{2}}; [/mm] 2k)

Und nun rechnen wir den Abstand dieser Punkte zu (0;0;0) aus:

[mm] \overline{OP_{k}} [/mm] = [mm] \wurzel{k^{2} + (\pm\wurzel{1-5k^{2}})^{2} + (2k)^{2}} [/mm] = 1 (!!!!)

Na also!

mfG!
Zwerglein

Bezug
                
Bezug
Ebene schneidet Quadrik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Mi 24.01.2007
Autor: sunshine111

Ach stimmt ja, die Quadrik stellt ja eine Ellipse dar.

Aber wie kommst du auf die Punktmenge?

Wenn du den Abstand berechnest, wie kommst du da auf 1?
Ich kann da leider nicht ganz folgen...
Könnest du mir das nochmal genauer ausführen? Ich steh grad irgendwie auf'm Schlauch.

Gäbe es auch noch einen anderen Weg?

Bezug
                        
Bezug
Ebene schneidet Quadrik: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:57 Mi 24.01.2007
Autor: sunshine111

oh sorry...

hab's geschnallt, wie du auf Abstand 1 kommst!

Aber gibt es noch einen anderen Weg?

Bezug
                                
Bezug
Ebene schneidet Quadrik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:07 Mi 24.01.2007
Autor: Zwerglein

Hi, sunshine,

> hab's geschnallt, wie du auf Abstand 1 kommst!
>  
> Aber gibt es noch einen anderen Weg?

Ehrlich gesagt bin ich froh, dass ich DIESEN Wege gefunden hab'!
Vielleicht gibt's noch einen anderen, aber die Tatsache, dass in der Aufgabenstellung der Mittelpunkt des Kreises vorgegeben ist, lässt mich daran zweifeln! In einer allgemeinen Kreisgleichung ließe sich der Mittelpunkt ja ebenso wie der Radius leicht ablesen!

mfG!
Zwerglein

Bezug
                                        
Bezug
Ebene schneidet Quadrik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:50 Mi 24.01.2007
Autor: sunshine111

Der eine Weg ist schon ok. Hätte mich nur interessiert, ob man es auch noch anders lösen könnte.

Nochmals danke für die schnelle und gute Antwort!

Grüße

Bezug
                                
Bezug
Ebene schneidet Quadrik: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Fr 26.01.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]