matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungEbene auf Fläche eingrenzen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Ebene auf Fläche eingrenzen
Ebene auf Fläche eingrenzen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebene auf Fläche eingrenzen: Panik! (schreibe morgen Abi!)
Status: (Frage) beantwortet Status 
Datum: 13:46 So 07.05.2006
Autor: poochy

Hallo!

Bei dieser Aufgabe bin ich verloren....bitte helft mir...:)

Es ist eine Ebene: 4x + 6y + 9z = 36 gegeben.
Darin liegt eine dreieckige Glasscheibe, die durch die Punkte A(9/0/0), B (0/6/0) und C(0/0/4) begrenzt wird. Außerdem gibt es einen Lichtstrahl: g:X=  (7,5/-2/8) + r(-3/2/-4) (Das sollte eigentlich ein Richtungsvektor werden...)
Man soll nun beweisen, dass der Lichtstrahl die Glasscheibe trifft.

Da habe ich natürlich erstmal den Durchstoßpunkt des Strahls durch die Ebene berechnet, der bei S(3/1/2) liegt.
Mein Problem ist nun zu beweisen, dass dieser Punkt in der Glasscheibe liegt....
Wie kann man denn die Ebene auf die Glasscheibe begrenzen?

Ich habe wirklich keine Ahnung und bitte dringend um Hilfe!

Vielen lieben Dank schon jetzt!

Mfg, poochy


        
Bezug
Ebene auf Fläche eingrenzen: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 17:02 So 07.05.2006
Autor: M.Rex

Hallo Poochy,

Ich glaube, ich habe eine Lösung für dein Problem gefunden.

Zuerst berechne doch mal die Ebene mit der Glasscheibe. Die müsste wie folgt aussehen

E: [mm] \vec{x} [/mm] =  [mm] \vektor{9 \\ 0 \\ 0} [/mm] + [mm] \lambda \vektor{-9 \\ 6 \\ 0} [/mm] + [mm] \mu \vektor{-9 \\ 0 \\ 4}. [/mm]

Dann prüfe, ob der Schnittpunkt in der Ebene liegt, und zwar mit [mm] \lambda [/mm] < 1 und [mm] \mu [/mm] <1 . Dann sollte der Punkt in der Glasscheibe liegen.



Gruss

Marius

Bezug
                
Bezug
Ebene auf Fläche eingrenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:57 So 07.05.2006
Autor: poochy


Danke, das klappt, mit 1/6 und 1/2 kleiner 1...aber......ich verstehe das ganze immer noch nicht.....woher weiß ich denn, dass die Parameter kleiner 1 sein müssen? Warum wird die Ebene dadurch auf die Glasscheibe eingegrenzt?....

Bezug
                        
Bezug
Ebene auf Fläche eingrenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:30 So 07.05.2006
Autor: poochy

Bitte helft mir! Es ist EXTREM dringend....wir schreiben morgen Abi! (bibber, bibber!)

Bezug
                        
Bezug
Ebene auf Fläche eingrenzen: Link
Status: (Antwort) fertig Status 
Datum: 22:04 So 07.05.2006
Autor: Disap

Hallo poochy.
Lies dir doch mal folgendes durch.
Ansonsten, verwirr dich jetzt nicht damit. Das kommt mit einer Wahrscheinlichkeit von 90% sowieso nicht dran.
Also merk dir einfach, dass es so ist und geh schlafen. Dann klappt das morgen auch.
Viel Erfolg!

MfG!
Disap

Bezug
                                
Bezug
Ebene auf Fläche eingrenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:09 So 07.05.2006
Autor: poochy

Ich hoffe ich werde davon verschont bleiben!
Danke für die aufbauenden Worte, ignoriert einfacht meine letzte Frage. Jetzt bringt das alles sowieso nichts mehr.

Mfg,

poochy

Bezug
                
Bezug
Ebene auf Fläche eingrenzen: zu oberflächlich
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:01 So 07.05.2006
Autor: Disap

Hallo M.Rex.


> E: [mm]\vec{x}[/mm] =  [mm]\vektor{9 \\ 0 \\ 0}[/mm] + [mm]\lambda \vektor{-9 \\ 6 \\ 0}[/mm]
> + [mm]\mu \vektor{-9 \\ 0 \\ 4}.[/mm]
>
> Dann prüfe, ob der Schnittpunkt in der Ebene liegt, und
> zwar mit [mm]\lambda[/mm] < 1 und [mm]\mu[/mm] <1 . Dann sollte der Punkt in
> der Glasscheibe liegen.

Also das glaube ich nicht. Wenn mein [mm] \lambda [/mm] = 0.99 und  [mm] \mu [/mm] = 0.99 wären, dann wäre ich schon ausserhalb des Dreiecks, was die Glasscheibe ist.

Es gelten eigentlich die Bedingungen:
0 [mm] \le\lambda \le1 [/mm]
0 [mm] \le\mu \le1 [/mm]
0 [mm] \le\lambda+\mu \le1 [/mm]  

Mir deucht, alle drei Bedingungen müssen erfüllt sein.

Oder ist jemand anderer Meinung?

MfG!
Disap


Bezug
                        
Bezug
Ebene auf Fläche eingrenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:06 So 07.05.2006
Autor: poochy

Ich habe die Aufgabe gerade in einem Starkabibuch gefunden. Du hast Recht, alle drei Bedingungen müssen erfüllt sein.

Kannst du mir bitte auch erklären warum und wie man darauf kommt?...:)

Bezug
                                
Bezug
Ebene auf Fläche eingrenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 So 07.05.2006
Autor: zerbinetta

Hallo poochy,

zeichne dir doch mal einfach ein Dreieck ABC auf. Stell dir vor, du befindest dich in Punkt A und darfst die Vektoren AB und AC zur "Fortbewegung" verwenden. Wenn du nur einen der beiden Vektoren entlanggehst, dann sind doch zumindest die ersten beiden Bedingungen anschaulich klar, oder? [mm]\lambda =1[/mm] würde ja bedeuten, dass du genau im Punkt B landen würdest, im Fall <1 würdest du auf der Seite AB landen.
Um einen Punkt im Inneren des Dreiecks zu "treffen", brauchst du beide Vektoren.
Jetzt kommt die dritte Bedingung ins Spiel. Die Seite BC "triffst" du genau dann, wenn [mm] \lambda + \mu =1 [/mm].
Ich glaube, es ist einfacher, das anschaulich anhand einer Zeichnung sich klarzumachen, als mit einem analytischen Beweis. (Liefer ich aber auch nach, falls es unbedingt sein muss... ;-) )

Viele Grüße und viel Erfolg morgen und:
KEINE PANIK!!!

zerbinetta

Bezug
                        
Bezug
Ebene auf Fläche eingrenzen: hast recht
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:52 Do 11.05.2006
Autor: M.Rex

Ich habe die Aufgabe zu schnell gelesen, so dass ich von einem Rechteck ausgegangen bin.
Sorry für all die Verwirrungen, die ich damit gestiftet habe.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]