matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikE((X-c)^2) endlich
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - E((X-c)^2) endlich
E((X-c)^2) endlich < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

E((X-c)^2) endlich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:14 Do 10.01.2013
Autor: triad

Aufgabe
Sei X eine diskrete Zufallsvariable, so dass [mm] E(X^2)<\infty. [/mm] Zeige, dass für jedes [mm] c\in\IR [/mm] gilt, dass [mm] E((X-c)^2)<\infty. [/mm] Bestimme dann c so, dass [mm] E((X-c)^2) [/mm] minimal ist.

Hallo.

Ich habe zunächst die Funktion ausmultipliziert und die Linearität des Erwartungswertes benutzt

[mm] E((X-c)^2) [/mm] = [mm] E(X^2-2cX+c^2) [/mm] = [mm] E(X^2)-2cE(X)+c^2. [/mm]

[mm] E(X^2)<\infty [/mm] gilt schon n.V., kann man daraus folgern, dass auch [mm] E(X)<\infty [/mm] ist, oder wie kann man hier sonst die Ungleichung zeigen?

[mm] E((X-c)^2) [/mm] ist minimal für c=E(X): [mm] E(X^2)-2cE(X)+c^2 [/mm] = [mm] E(X^2)-2E(X)E(X)+E(X)^2 [/mm] = [mm] E(X^2)-2E(X)^2+E(X)^2 [/mm] = [mm] E(X^2)-E(X)^2. [/mm] Aber warum ist das der minimale Wert?


gruß triad

        
Bezug
E((X-c)^2) endlich: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 Do 10.01.2013
Autor: luis52


> Sei X eine diskrete Zufallsvariable, so dass [mm]E(X^2)<\infty.[/mm]
> Zeige, dass für jedes [mm]c\in\IR[/mm] gilt, dass
> [mm]E((X-c)^2)<\infty.[/mm] Bestimme dann c so, dass [mm]E((X-c)^2)[/mm]
> minimal ist.
>  Hallo.
>  
> Ich habe zunächst die Funktion ausmultipliziert und die
> Linearität des Erwartungswertes benutzt
>  
> [mm]E((X-c)^2)[/mm] = [mm]E(X^2-2cX+c^2)[/mm] = [mm]E(X^2)-2cE(X)+c^2.[/mm]
>  
> [mm]E(X^2)<\infty[/mm] gilt schon n.V., kann man daraus folgern,
> dass auch [mm]E(X)<\infty[/mm] ist,  

Ja.

>  
> [mm]E((X-c)^2)[/mm] ist minimal für c=E(X): [mm]E(X^2)-2cE(X)+c^2[/mm] =
> [mm]E(X^2)-2E(X)E(X)+E(X)^2[/mm] = [mm]E(X^2)-2E(X)^2+E(X)^2[/mm] =
> [mm]E(X^2)-E(X)^2.[/mm] Aber warum ist das der minimale Wert?

  
Leite mal nach $c$ ab ...

vg Luis





Bezug
                
Bezug
E((X-c)^2) endlich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:22 Fr 11.01.2013
Autor: triad

Hi und danke für deine Antwort.

> > Sei X eine diskrete Zufallsvariable, so dass [mm]E(X^2)<\infty.[/mm]
> > Zeige, dass für jedes [mm]c\in\IR[/mm] gilt, dass
> > [mm]E((X-c)^2)<\infty.[/mm] Bestimme dann c so, dass [mm]E((X-c)^2)[/mm]
> > minimal ist.
>  >  Hallo.
>  >  
> > Ich habe zunächst die Funktion ausmultipliziert und die
> > Linearität des Erwartungswertes benutzt
>  >  
> > [mm]E((X-c)^2)[/mm] = [mm]E(X^2-2cX+c^2)[/mm] = [mm]E(X^2)-2cE(X)+c^2.[/mm]
>  >  
> > [mm]E(X^2)<\infty[/mm] gilt schon n.V., kann man daraus folgern,
> > dass auch [mm]E(X)<\infty[/mm] ist,  
>
> Ja.
>  
> >  

> > [mm]E((X-c)^2)[/mm] ist minimal für c=E(X): [mm]E(X^2)-2cE(X)+c^2[/mm] =
> > [mm]E(X^2)-2E(X)E(X)+E(X)^2[/mm] = [mm]E(X^2)-2E(X)^2+E(X)^2[/mm] =
> > [mm]E(X^2)-E(X)^2.[/mm] Aber warum ist das der minimale Wert?
>    
> Leite mal nach [mm]c[/mm] ab ...
>  
> vg Luis
>  
>

Nagut, wenn ich [mm] E(X^2)-2cE(X)+c^2 [/mm] nach c ableite erhalte ich [mm] (E(X^2)-2cE(X)+c^2)' [/mm] = 2c-2E(X). Nullsetzten liefert die Lösung: 2c-2E(X)=0 [mm] \gdw [/mm] 2c=2E(X) [mm] \gdw [/mm] c=E(X).
Aber warum erhalte ich das gerade durch Ableiten und warum ist das dann jenes c für das ich das Minimum erhalte?


gruß triad

Bezug
                        
Bezug
E((X-c)^2) endlich: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Fr 11.01.2013
Autor: schachuzipus

Hallo triad,



> > >  

> > > [mm]E((X-c)^2)[/mm] ist minimal für c=E(X): [mm]E(X^2)-2cE(X)+c^2[/mm] =
> > > [mm]E(X^2)-2E(X)E(X)+E(X)^2[/mm] = [mm]E(X^2)-2E(X)^2+E(X)^2[/mm] =
> > > [mm]E(X^2)-E(X)^2.[/mm] Aber warum ist das der minimale Wert?
>  >    
> > Leite mal nach [mm]c[/mm] ab ...
>  >  
> > vg Luis
>  >  
> >
>
> Nagut, wenn ich [mm]E(X^2)-2cE(X)+c^2[/mm] nach c ableite erhalte
> ich [mm](E(X^2)-2cE(X)+c^2)'[/mm] = 2c-2E(X). Nullsetzten liefert
> die Lösung: 2c-2E(X)=0 [mm]\gdw[/mm] 2c=2E(X) [mm]\gdw[/mm] c=E(X).
>  Aber warum erhalte ich das gerade durch Ableiten und warum
> ist das dann jenes c für das ich das Minimum erhalte?

Du kannst das doch als Funktion in der Variable c auffassen, also [mm]f(c)=E[X^2]-2cE[X]+c^2[/mm]

Und wie man Extrema einer Funktion besimmt, weißt du seit der Mittelstufe ...

Prüfe auch noch, ob der gefundene Kandidat [mm]c[/mm] auch wirklich eine Minimalstelle ist ...


>  
>
> gruß triad

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]