matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisEW, EF und ONB von d^2/dx^2
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionalanalysis" - EW, EF und ONB von d^2/dx^2
EW, EF und ONB von d^2/dx^2 < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

EW, EF und ONB von d^2/dx^2: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:35 So 31.08.2014
Autor: Samyy

Aufgabe
Sei [mm] $I:=[-\frac{c}{2},\frac{c}{2}]\subset\mathbb{R}$ [/mm] ein beschränktes intervall mit $c>0$. Betrachte den Differentialoperator
$$T [mm] :L^2(I)\supset D(T)\rightarrow L^2(I), f(x)\mapsto [/mm] -f''(x),$$
wobei $ [mm] D(T):=\lbrace f\in C^2(I) [/mm] : [mm] f(-\frac{c}{2})=0=f(\frac{c}{2}) \rbrace$. [/mm] Finde alle Eigenfunktionen [mm] $f\in [/mm] D(T)$ und Eigenwerte $ [mm] \lambda\in\mathbb{R}$ [/mm] und zeige, dass die Eigenfunktionen ein vollständiges Orthonormalsystem in [mm] $L^2(I)$ [/mm] bilden.


Hallo,

ich komme bei obiger Aufgabenstellung nicht weiter und bin mir auch nicht sicher, ob meine Ansätze ok sind. Zunächst einmal habe ich die Eigenwerte und Eigenfunktionen bestimmt und habe erhalten:

Eigenwerte: [mm] $\frac{\pi^2}{c^2}\cdot n^2 [/mm] $ mit [mm] $n\geq [/mm] 1$ eine natürliche Zahl.

normierten Eigenfunktionen: [mm] $f_n(x):= \sqrt{\frac{2}{c}}sin(\frac{\pi n}{c}x)$, [/mm] falls n gerade und

[mm] $f_n(x):= \sqrt{\frac{2}{c}}cos(\frac{\pi n}{c}x)$, [/mm] falls n ungerade.

Ist das soweit richtig?

Nun habe ich probleme zu zeigen, dass diese Funktionen dicht liegen in [mm] $L^2(I)$. [/mm]

Angenommen, eine Funktion [mm] $f\in L^2(I)$ [/mm] ist senkrecht zu allen obigen Eigenfunktionen. Warum muss diese dann die Nullfunktion sein? Hat jemand eine Idee für mich?




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
EW, EF und ONB von d^2/dx^2: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Di 02.09.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]