matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesDreiecksungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - Dreiecksungleichung
Dreiecksungleichung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreiecksungleichung: Beweisen
Status: (Frage) beantwortet Status 
Datum: 00:54 Do 27.10.2011
Autor: quasimo

Aufgabe
Beweisen Sie die Dreiecksungleichung
||x+y|| $ [mm] \le$ [/mm] ||x|| + ||y||

Hóla Leute der Nacht

Hab ||x|| = $ [mm] \sqrt{}$ [/mm] vorausgesetzt
dann quadriert und weggestrichen

Ich komme bis zu diesem Schritt hier:
$<x,y>$ $ [mm] \le$ $\sqrt [/mm] {<x,x>} * [mm] \sqrt [/mm] {<y,y>} $
bzw.
$<x,y>$ $ [mm] \le$ [/mm] $||<x,x>|| * ||<y,y>|| $

        
Bezug
Dreiecksungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:02 Do 27.10.2011
Autor: reverend

Hallo quasimo,

> Beweisen Sie die Dreiecksungleichung
> ||x+y|| [mm]\le[/mm] ||x|| + ||y||
>  Hóla Leute der Nacht

Bist Du mit Zeitzonen vertraut? ;-)

> Hab ||x|| = [mm]\sqrt{}[/mm] vorausgesetzt

Wieso?

>  dann quadriert und weggestrichen
>  
> Ich komme bis zu diesem Schritt hier:
>  [mm][/mm] [mm]\le[/mm] [mm]\sqrt {} * \sqrt {}[/mm]
>  bzw.
>  [mm][/mm] [mm]\le[/mm] [mm]|||| * ||||[/mm]

Naja, das gilt wohl auch. Aber Deine Voraussetzung ist falsch.
Schau mal []hier.

Grüße
reverend


Bezug
                
Bezug
Dreiecksungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:07 Do 27.10.2011
Autor: quasimo

Immer einen guten Spruch auf Lager^^

weil wir in der vorlesung hatten

||x|| = [mm] $\sqrt {x_1^2 +x_2^2}$ [/mm]

$da [mm] x_1^2 +x_2^2=$ [/mm]

[mm] $=\sqrt [/mm] {<x,x>}$

Bezug
                        
Bezug
Dreiecksungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:10 Do 27.10.2011
Autor: leduart

Hallo
du hast recht.
Gruss leduart


Bezug
                                
Bezug
Dreiecksungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:14 Do 27.10.2011
Autor: reverend

Hallo quasimo,

tut mir leid, wenn meine Rückmeldung irreführend war. Ich fürchte, Eure Notation ist mir nicht vertraut. Dass [mm] ||x||=\wurzel{x^2+x^2} [/mm] ist, wusste ich nicht. Von daher wäre es hilfreich, wenn Du Definition oder Kontext mitliefern könntest, dann wäre zumindest ich nicht in die Falle getappt.

Also: Entschuldigung nochmal!

Grüße
reverend


Bezug
        
Bezug
Dreiecksungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:09 Do 27.10.2011
Autor: leduart

Hallo
deine gesuchte Ungleichung ist hier gerade bewiesen;
https://vorhilfe.de/read?t=830020

Gruss leduart


Bezug
                
Bezug
Dreiecksungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:12 Do 27.10.2011
Autor: quasimo

Also steckt in der Dreiecksungleichung die CS-Ungleichung drinnen?

Bezug
                        
Bezug
Dreiecksungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:55 Do 27.10.2011
Autor: fred97


> Also steckt in der Dreiecksungleichung die CS-Ungleichung
> drinnen?

Für den Beweis der Dreiecksungleichung benutzt man die CS-Ungleichung

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]